scholarly journals Intelligent Land Vehicle Model Transfer Trajectory Planning Method Based on Deep Reinforcement Learning

Author(s):  
Lingli Yu ◽  
Xuanya Shao ◽  
Yadong Wei ◽  
Kaijun Zhou

Aiming at the problem of model error and tracking dependence in the process of intelligent vehicle motion planning, an intelligent vehicle model transfer trajectory planning method based on deep reinforcement learning is proposed, which obtain an effective control action sequence directly. Firstly, an abstract model of the real environment is extracted. On this basis, Deep Deterministic Policy Gradient (DDPG) and vehicle dynamic model are adopted to jointly train a reinforcement learning model, and to decide the optimal intelligent driving maneuver. Secondly, the actual scene is transferred to equivalent virtual abstract scene by transfer model, furthermore, the control action and trajectory sequences are calculated according to trained deep reinforcement learning model. Thirdly, the optimal trajectory sequence is selected according to evaluation function in the real environment. Finally, the results demonstrate that the proposed method can deal with the problem of intelligent vehicle trajectory planning for continuous input and continuous output. The model transfer method improves the model generalization performance. Compared with the traditional trajectory planning, the proposed method output continuous rotation angle control sequence, meanwhile, the lateral control error is also reduced.

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 135513-135523
Author(s):  
Qingfeng Yao ◽  
Zeyu Zheng ◽  
Liang Qi ◽  
Haitao Yuan ◽  
Xiwang Guo ◽  
...  

2021 ◽  
pp. 027836492098785
Author(s):  
Julian Ibarz ◽  
Jie Tan ◽  
Chelsea Finn ◽  
Mrinal Kalakrishnan ◽  
Peter Pastor ◽  
...  

Deep reinforcement learning (RL) has emerged as a promising approach for autonomously acquiring complex behaviors from low-level sensor observations. Although a large portion of deep RL research has focused on applications in video games and simulated control, which does not connect with the constraints of learning in real environments, deep RL has also demonstrated promise in enabling physical robots to learn complex skills in the real world. At the same time, real-world robotics provides an appealing domain for evaluating such algorithms, as it connects directly to how humans learn: as an embodied agent in the real world. Learning to perceive and move in the real world presents numerous challenges, some of which are easier to address than others, and some of which are often not considered in RL research that focuses only on simulated domains. In this review article, we present a number of case studies involving robotic deep RL. Building off of these case studies, we discuss commonly perceived challenges in deep RL and how they have been addressed in these works. We also provide an overview of other outstanding challenges, many of which are unique to the real-world robotics setting and are not often the focus of mainstream RL research. Our goal is to provide a resource both for roboticists and machine learning researchers who are interested in furthering the progress of deep RL in the real world.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Shan Fang ◽  
Lan Yang ◽  
Tianqi Wang ◽  
Shoucai Jing

Traffic lights force vehicles to stop frequently at signalized intersections, which leads to excessive fuel consumption, higher emissions, and travel delays. To address these issues, this study develops a trajectory planning method for mixed vehicles at signalized intersections. First, we use the intelligent driver car-following model to analyze the string stability of traffic flow upstream of the intersection. Second, we propose a mixed-vehicle trajectory planning method based on a trigonometric model that considers prefixed traffic signals. The proposed method employs the proportional-integral-derivative (PID) model controller to simulate the trajectory when connected vehicles (equipped with internet access) follow the optimal advisory speed. Essentially, only connected vehicle trajectories need to be controlled because normal vehicles simply follow the connected vehicles according to the Intelligent Driver Model (IDM). The IDM model aims to minimize traffic oscillation and ensure that all vehicles pass the signalized intersection without stopping. The results of a MATLAB simulation indicate that the proposed method can reduce fuel consumption and NOx, HC, CO2, and CO concentrations by 17%, 22.8%, 17.8%, 17%, and 16.9% respectively when the connected vehicle market penetration is 50 percent.


2021 ◽  
Author(s):  
Heqiang Tian ◽  
Jingbo Pan ◽  
Yu Gao ◽  
Bin Tian ◽  
Debao Meng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document