scholarly journals A Polyphenol Rich Extract from Solanum melongena L. DR2 Peel Exhibits Antioxidant Properties and Anti-Herpes Simplex virus Type 1 Activity In Vitro

Author(s):  
Antonella Di Sotto ◽  
Silvia Di Giacomo ◽  
Donatella Amatore ◽  
Marcello Locatelli ◽  
Annabella Vitalone ◽  
...  

DR2B and DR2C extracts, from peel of commercially and physiologically ripe eggplants, were studied for the antioxidative cytoprotective properties and anti-HSV-1 activity, in line with the evidence that several antioxidants can impair viral replication by maintaining reducing conditions into the host cells. The antioxidative cytoprotective effects against tBOOH-induced damage was assessed in Caco2 cells, while the antiviral activity was studied in Vero cells; phenolic and anthocyanin fingerprint was characterized by integrated phytochemical methods. Results highlighted different compositions of the extracts, with chlorogenic acid and delphinidin-3-rutinoside as the major constituents; other peculiar phytochemicals were also identified. DR2C resulted able to partly counteract the tBOOH-induced cytotoxicity, with a remarkable lowering of lactate metabolism under both normoxia and hypoxia. DR2B and DR2C reduced ROS production, possessed scavenging and chelating properties. Interestingly, DR2C increased intracellular GSH levels. Furthermore, DR2C inhibited the HSV-1 replication when added for 24 h after viral adsorption, as also confirmed by the reduction of many viral proteins expression. Since DR2C was able to reduce NOX4 expression during HSV-1 infection, its antiviral activity may be correlated to its antioxidant properties. Although further studies are needed to better characterize DR2C activity, the results suggest this extract as a promising new anti-HSV-1 agent.

Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 2066 ◽  
Author(s):  
Antonella Di Sotto ◽  
Silvia Di Giacomo ◽  
Donatella Amatore ◽  
Marcello Locatelli ◽  
Annabella Vitalone ◽  
...  

DR2B and DR2C extracts, obtained by ethanolic maceration of peel from commercially and physiologically ripe aubergine berries, were studied for the antioxidative cytoprotective properties and anti-HSV-1 activity, in line with the evidence that several antioxidants can impair viral replication by maintaining reducing conditions in host cells. The antioxidative cytoprotective effects against tBOOH-induced damage were assessed in Caco2 cells, while antiviral activity was studied in Vero cells; polyphenolic fingerprints were characterized by integrated phytochemical methods. Results highlighted different compositions of the extracts, with chlorogenic acid and delphinidin-3-rutinoside as the major constituents; other peculiar phytochemicals were also identified. Both samples reduced reactive oxygen species (ROS) production and exhibited scavenging and chelating properties. DR2C partly counteracted the tBOOH-induced cytotoxicity, with a remarkable lowering of lactate metabolism under both normoxia and hypoxia; interestingly, it increased intracellular GSH levels. Furthermore, DR2C inhibited the HSV-1 replication when added for 24 h after viral adsorption, as also confirmed by the reduction of many viral proteins’ expression. Since DR2C was able to reduce NOX4 expression during HSV-1 infection, its antiviral activity may be correlated to its antioxidant properties. Although further studies are needed to better characterize DR2C activity, the results suggest this extract as a promising new anti-HSV-1 agent.


2009 ◽  
Vol 20 (2) ◽  
pp. 87-98 ◽  
Author(s):  
Ira Yudovin-Farber ◽  
Irina Gurt ◽  
Ronen Hope ◽  
Abraham J Domb ◽  
Ehud Katz

Background: Herpes simplex virus (HSV) establishes latent infection in humans with periodic reactivation. Acyclovir, valacyclovir and foscarnet are in medical use today against HSV type-1 (HSV-1) and type-2 (HSV-2), inhibiting the DNA synthesis of the viruses. Additional drugs that will affect the growth of these viruses by other mechanisms and also decrease the frequency of appearance of drug-resistant mutants are required. Methods: Cationic polysaccharides were synthesized by conjugation of various oligoamines to oxidized polysaccharides by reductive amination. Polycations of dextran, pullulan and arabinogalactan were grafted with oligoamines of 2–4 amino groups forming Schiff-base imine-based conjugates followed by reduction with borohydride to obtain the stable amine-based conjugate. Evaluation of toxicity to BS-C-1 cells and antiviral activity against HSV-1 and HSV-2 of the different compounds was performed in vitro by a semiquantitative assay. A quantitative study with a selected compound followed. Results: Structure–activity relationship studies showed that the nature of the grafted oligoamine of the polycation plays an essential role in the antiviral activity against HSV-1 and HSV-2. Dextran-propan-1,3-diamine (DPD) was found to be the most potent of all the compounds examined. DPD did not decrease the infectivity of HSV upon direct exposure to the virions. The growth of HSV was significantly inhibited when DPD was added to the host cells 1 h prior to infection, thus preventing the adsorption and penetration of the virus into the cells. Conclusions: Our in vitro data warrant clinical investigation. DPD could have an advantage as a topical application in combination therapy of HSV lesions.


2003 ◽  
Vol 77 (2) ◽  
pp. 1382-1391 ◽  
Author(s):  
Michiko Tanaka ◽  
Hiroyuki Kagawa ◽  
Yuji Yamanashi ◽  
Tetsutaro Sata ◽  
Yasushi Kawaguchi

ABSTRACT In recent years, several laboratories have reported on the cloning of herpes simplex virus type 1 (HSV-1) genomes as bacterial artificial chromosomes (BACs) in Escherichia coli and on procedures to manipulate these genomes by using the bacterial recombination machinery. However, the HSV-BACs reported so far are either replication incompetent or infectious, with a deletion of one or more viral genes due to the BAC vector insertion. For use as a multipurpose clone in research on HSV-1, we attempted to generate infectious HSV-BACs containing the full genome of HSV-1 without any loss of viral genes. Our results were as follows. (i) E. coli (YEbac102) harboring the full-length HSV-1 genome (pYEbac102) in which a BAC flanked by loxP sites was inserted into the intergenic region between UL3 and UL4 was constructed. (ii) pYEbac102 was an infectious molecular clone, given that its transfection into rabbit skin cells resulted in production of infectious virus (YK304). (iii) The BAC vector sequence was almost perfectly excisable from the genome of the reconstituted virus YK304 by coinfection of Vero cells with YK304 and a recombinant adenovirus, AxCANCre, expressing Cre recombinase. (iv) As far as was examined, the reconstituted viruses from pYEbac102 could not be phenotypically differentiated from wild-type viruses in vitro and in vivo. Thus, the viruses grew as well in Vero cells as did the wild-type virus and exhibited wild-type virulence in mice on intracerebral inoculation. (v) The infectious molecular clone pYEbac102 is in fact useful for mutagenesis of the HSV-1 genome by bacterial genetics, and a recombinant virus carrying amino acid substitutions in both copies of the α0 gene was generated. pYEbac102 will have multiple applications to the rapid generation of genetically engineered HSV-1 recombinants in basic research into HSV-1 and in the development of HSV vectors in human therapy.


2002 ◽  
Vol 76 (22) ◽  
pp. 11541-11550 ◽  
Author(s):  
Bruno Sainz ◽  
William P. Halford

ABSTRACT In vivo evidence suggests that T-cell-derived gamma interferon (IFN-γ) can directly inhibit the replication of herpes simplex virus type 1 (HSV-1). However, IFN-γ is a weak inhibitor of HSV-1 replication in vitro. We have found that IFN-γ synergizes with the innate IFNs (IFN-α and -β) to potently inhibit HSV-1 replication in vitro and in vivo. Treatment of Vero cells with either IFN-β or IFN-γ inhibits HSV-1 replication by <20-fold, whereas treatment with both IFN-β and IFN-γ inhibits HSV-1 replication by ∼1,000-fold. Treatment with IFN-β and IFN-γ does not prevent HSV-1 entry into Vero cells, and the inhibitory effect can be overcome by increasing the multiplicity of HSV-1 infection. The capacity of IFN-β and IFN-γ to synergistically inhibit HSV-1 replication is not virus strain specific and has been observed in three different cell types. For two of the three virus strains tested, IFN-β and IFN-γ inhibit HSV-1 replication with a potency that approaches that achieved by a high dose of acyclovir. Pretreatment of mouse eyes with IFN-β and IFN-γ reduces HSV-1 replication to nearly undetectable levels, prevents the development of disease, and reduces the latent HSV-1 genome load per trigeminal ganglion by ∼200-fold. Thus, simultaneous activation of IFN-α/β receptors and IFN-γ receptors appears to render cells highly resistant to the replication of HSV-1. Because IFN-α or IFN-β is produced by most cells as an innate response to virus infection, the results imply that IFN-γ secreted by T cells may provide a critical second signal that potently inhibits HSV-1 replication in vivo.


2019 ◽  
Vol 14 (6) ◽  
pp. 1934578X1986067 ◽  
Author(s):  
Sergey G. Polonik ◽  
Natalia V. Krylova ◽  
Galina G. Kompanets ◽  
Olga V. Iunikhina ◽  
Yuri E. Sabutski

Four 1,4-naphthoquinone dithioglucoside derivatives based on natural polyhydroxy-1,4-naphthoquinones were synthesized. These thioglucosides were screened for their antiradical and antiviral activity in vitro. Antiradical activity of tested compounds was determined by the 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay. The anti-herpes simplex virus type 1 (anti-HSV-1) activity of thioglucosides was analyzed by the cytopathic effect inhibition assay and mode of antiviral action was determined by the addition of the tested compounds to uninfected cells, to the virus prior to infection, or to herpes-infected cells. Most effective inhibition of HSV-1 replication was observed at pretreatment of virus by the compounds (direct virucidal effect). The dithioglucoside conjugate with the single β-OH group and lipophilic ethyl substituent in naphthoquinone core showed the greatest antiviral activity.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1553
Author(s):  
Kanyaluck Jantakee ◽  
Panchika Prangkio ◽  
Aussara Panya ◽  
Yingmanee Tragoolpua

Herpes simplex virus (HSV) infections are prevalent worldwide and are the cause of life- threatening diseases. Standard treatment with antiviral drugs, such as acyclovir, could prevent serious complications; however, resistance has been reported specifically among immunocompromised patients. Therefore, the development of an alternative approach is needed. The silk cocoon derived from silkworm, Bombyx mori, has been recognized for its broad-spectrum biological activity, including antiviral activity; however, its effects against HSV infection are unknown. In this study, we investigated the inhibitory effects of silk extracts derived from the cocoon shell, silk cocoon, silkworm pupa and non-sericin extract, on blocking HSV-1 and HSV-2 binding to host cells, resulting in the inhibition of the virus infection in Vero cells. Non-sericin extract demonstrated the greatest effectiveness on inhibiting HSV-1 and HSV-2 binding activity. Moreover, the virucidal effect to inactivate HSV-1 and HSV-2 was determined and revealed that non-sericin extract also exerted the highest potential activity. Using the treatment of non-sericin extract in HSV-2-infected HeLa cells could significantly lower the HSV-induced cell death and prevent inflammation via lowering the inflammatory cytokine gene expression. The non-sericin extract was analyzed for its bioactive compounds in which gallic acid, flavonoid and xanthophyll were identified, and might have partially contributed to its antiviral activity. The finding in our study suggested the potential of silk extract as an alternative therapeutic treatment for HSV infection.


2001 ◽  
Vol 12 (6) ◽  
pp. 337-345 ◽  
Author(s):  
Astrid Meerbach ◽  
Johan Neyts ◽  
Jan Balzarini ◽  
Björn Helbig ◽  
Erik De Clercq ◽  
...  

The antiviral activity of 17 polyhydroxycarboxylates derived from phenolic compounds was evaluated against herpesviruses and HIV. When present during virus adsorption several of the polymers exhibited potent activity against herpes simplex virus type 1 (HSV-1), HSV-2, thymidine kinase deficient HSV-1, human cytomegalovirus (HCMV) and HIV-1 and HIV-2 at concentrations that were not toxic to the host cells. A close correlation was found between the 50% inhibitory concentrations of the polyhydroxycarboxylates against HCMV-induced cytopathicity, their inhibitory effect on the expression of HCMV-specific immediate early antigens and their inhibitory effects on HCMV adsorption to the cells. The antiviral activity of the phenolic polymers was dependent on the presence of a sufficient number of carboxylic groups. The mechanism of antiviral action of the polyhydroxycarboxylates can thus be ascribed to inhibition of virus adsorption. This type of compound may have potential in a vaginal gel to prevent sexual transmission of HSV and HIV.


2020 ◽  
Vol 15 (1) ◽  
pp. 11-18
Author(s):  
Arisha Taj Mahaboob Batcha ◽  
Ashish Wadhwani ◽  
Gowri Subramaniam

The present study evaluates the antiviral activity of banana lectin (BanLec) against herpes simplex virus type 1 and 2 (HSV-1 and HSV-2). Lectin was isolated from the ripen pulp of bananas (Musa paradisiaca). The study showed that lectin exhibited hemagglutination activity towards human erythrocytes A, B, AB and O group. The molecular weight of BanLec using SDS gel-electrophoresis was found to be 14,000-30,000 Da. Cytotoxicity of BanLec on the Vero cell lines showed an inhibitory concentration of 172.7 µg/mL. BanLec was virucidal and showed no cytotoxicity at the concentration tested. The lectin showed a dose-dependent antiviral activities, inhibiting HSV-1 by 16.0 µg/mL with selectivity index 10.8 and HSV-2 inhibition by 67.7 µg/mL with selectivity index 2.6. These results corroborate that BanLec could be a rich source of potential antiviral compound for HSV-1 when compared to HSV-2.


1998 ◽  
Vol 9 (1) ◽  
pp. 33-40 ◽  
Author(s):  
JR Beadle ◽  
GD Kini ◽  
KA Aldern ◽  
MF Gardner ◽  
KN Wright ◽  
...  

In a previous study, we reported that 1- O-octadecyl- sn-glycero-3-foscarnet (ODG-PFA) was 40 to 93 times more potent than free foscarnet (PFA) in human cytomegalovirus (HCMV)-, herpes simplex virus type 1 (HSV-1)- and human immunodeficiency virus type 1 (HIV-1)-infected cells. To evaluate the effect of substituting a 1- S-alkyl thioether for a 1- O-alkyl ether, we synthesized a series of PFA conjugates of 1- S-alkyl- sn-thioglycerols with varied 1- S-alkyl chain lengths. To establish structure–activity relationships we measured the in vitro antiviral activity of liposomal formulations of the drugs in cells infected with HCMV, HSV-1 or HIV-1. The optimum 1- S-alkyl chain length in the series was 16 to 18 carbon atoms. We compared the antiviral activity of 16- and 18-carbon alkyl thioglycerol versus alkylglycerol prodrugs and did not observe any significant differences in their antiviral activities. The series' most active member, 1- S-octadecyl- sn-glycero-3-foscarnet (ODSG-PFA) was 56-, eight- and 45-fold more active than PFA in HCMV-, HSV-1- and HIV-1-infected cells in vitro. The oral absorption of PFA and 1-S-octadecyl-sn-thioglycero-3-PFA was compared in mice by measuring plasma levels of 14C after oral administration of radiolabelled compounds. The peak plasma level of 14C was sevenfold higher following administration of [14C]ODSG-PFA than following an equimolar dose of [14C]PFA. Area-under-the-curve was 23-fold greater for ODSG-PFA than for PFA. Like previously reported alkyloxyether–lipid PFA conjugates, alkylthioether conjugates provided enhanced antiviral activity and oral bioavailability. However, S-ether conjugates may be metabolized differently than O-ether conjugates. More detailed in vivo pharmacokinetic evaluation of the alkyl-thioether–PFA conjugates is required.


2019 ◽  
Vol 1 (1) ◽  
pp. 53-58
Author(s):  
N. V. Krylova ◽  
S. A. Fedoreev ◽  
V. F. Lavrov ◽  
N. P. Mischenko ◽  
E. A. Vasileva ◽  
...  

The aim of this study was to examine in vitro the antioxidant and antiviral activity of echinochrome A and echinochrome-based antioxidant composition against tick-borne encephalitis virus (TBEV) and herpes simplex virus type 1 (HSV-1). Materials and methods. TBEV (Dal’negorsk strain, Far Eastern subtype) grown in PK cells, and HSV-1 (VR3 strain) in Vero cells. The antioxidant activity of the compounds was determined using the linetol peroxide oxidation model. The cytotoxicity and antiviral activity of the compounds were assessed by cell viability (PK- and Vero cells) and by cytopathic effect inhibition of viruses (TBEV and HSV-1) using the MTT test. Results. The antioxidant composition, which is a mixture of echinochrome A, ascorbic acid and α-tocopherol (5: 5: 1), showed a higher antioxidant and antiviral efficacy than echinochrome A. The antiviral mechanisms on of echinochrome A and antioxidant composition are caused by direct inactivation of TBEV and HSV-1 viruses and inhibition of virus penetration into cells. Conclusion. The results obtained allow considering the echinochrome A and the composition of antioxidants on its basis as the promising agents of a broad-spectrum antiviral activity.


Sign in / Sign up

Export Citation Format

Share Document