scholarly journals AutoCloud+, a “Universal” Physical and Statistical Model-Based 2D Spatial Topology-Preserving Software Toolbox for Cloud/Cloud-Shadow Detection in Multi-Sensor Single-Date Earth Observation Multi-Spectral Imagery Eligible for Systematic ESA EO Level 2 Product Generation

Author(s):  
Andrea Baraldi ◽  
Dirk Tiede

The European Space Agency (ESA) defines as Earth observation (EO) Level 2 information product a single-date multi-spectral (MS) image corrected for atmospheric, adjacency and topographic effects, stacked with its data-derived scene classification map (SCM), whose thematic map legend includes quality layers cloud and cloud-shadow. ESA EO Level 2 product generation is an inherently ill-posed computer vision (CV) problem never accomplished to date in operating mode by any EO data provider at the ground segment. Herein, it is considered: (I) necessary not sufficient pre-condition for the yet-unaccomplished dependent problems of semantic content-based image retrieval (SCBIR) and semantics-enabled information/knowledge discovery (SEIKD) in multi-source EO big data cubes. (II) Synonym of EO Analysis Ready Data (ARD) format. (III) Equivalent to a horizontal policy for background developments in Space Economy 4.0. In compliance with the GEO-CEOS Quality Assurance Framework for EO Calibration/Validation guidelines, to contribute toward filling an analytic and pragmatic information gap from multi-sensor EO big data to timely, comprehensive and operational EO value-adding information products and services, this work presents an innovative AutoCloud+ CV software toolbox for cloud and cloud-shadow quality layer detection in ESA EO Level 2 product. In vision, spatial information dominates color information. Inspired by this true-fact, the inherently ill-posed AutoCloud+ CV software was conditioned, designed and implemented to be “universal”, meaning fully automated (no human-machine interaction is required), near real-time, robust to changes in input data and scalable to changes in MS imaging sensor’s spatial and spectral resolution specifications.

Author(s):  
Andrea Baraldi ◽  
Dirk Tiede

The European Space Agency (ESA) defines as Earth observation (EO) Level 2 information product a single-date multi-spectral (MS) image corrected for atmospheric, adjacency and topographic effects, stacked with its data-derived scene classification map (SCM), whose thematic map legend includes quality layers cloud and cloud-shadow. ESA EO Level 2 product generation is an inherently ill-posed computer vision (CV) problem never accomplished to date in operating mode by any EO data provider at the ground segment. Herein, it is considered: (I) necessary not sufficient pre-condition for the yet-unaccomplished dependent problems of semantic content-based image retrieval (SCBIR) and semantics-enabled information/knowledge discovery (SEIKD) in multi-source EO big data cubes. (II) Synonym of EO Analysis Ready Data (ARD) format. (III) Equivalent to a horizontal policy for background developments in Space Economy 4.0. In compliance with the GEO-CEOS Quality Assurance Framework for EO Calibration/Validation guidelines, to contribute toward filling an analytic and pragmatic information gap from multi-sensor EO big data to timely, comprehensive and operational EO value-adding information products and services, this work presents an innovative AutoCloud+ CV software toolbox for cloud and cloud-shadow quality layer detection in ESA EO Level 2 product. In vision, spatial information dominates color information. Inspired by this true-fact, the inherently ill-posed AutoCloud+ CV software was conditioned, designed and implemented to be “universal”, meaning fully automated (no human-machine interaction is required), near real-time, robust to changes in input data and scalable to changes in MS imaging sensor’s spatial and spectral resolution specifications.


2018 ◽  
Vol 7 (12) ◽  
pp. 457 ◽  
Author(s):  
Andrea Baraldi ◽  
Dirk Tiede

The European Space Agency (ESA) defines Earth observation (EO) Level 2 information product the stack of: (i) a single-date multi-spectral (MS) image, radiometrically corrected for atmospheric, adjacency and topographic effects, with (ii) its data-derived scene classification map (SCM), whose thematic map legend includes quality layers cloud and cloud–shadow. Never accomplished to date in an operating mode by any EO data provider at the ground segment, systematic ESA EO Level 2 product generation is an inherently ill-posed computer vision (CV) problem (chicken-and-egg dilemma) in the multi-disciplinary domain of cognitive science, encompassing CV as subset-of artificial general intelligence (AI). In such a broad context, the goal of our work is the research and technological development (RTD) of a “universal” AutoCloud+ software system in operating mode, capable of systematic cloud and cloud–shadow quality layers detection in multi-sensor, multi-temporal and multi-angular EO big data cubes characterized by the five Vs, namely, volume, variety, veracity, velocity and value. For the sake of readability, this paper is divided in two. Part 1 highlights why AutoCloud+ is important in a broad context of systematic ESA EO Level 2 product generation at the ground segment. The main conclusions of Part 1 are that ESA EO Level 2 information product is regarded as: (I) necessary-but-not-sufficient pre-condition for the yet-unaccomplished dependent problems of semantic content-based image retrieval (SCBIR) and semantics-enabled information/knowledge discovery (SEIKD) in multi-source EO big data cubes, where SCBIR and SEIKD are part-of the GEO-CEOS visionary goal of a yet-unaccomplished Global EO System of Systems (GEOSS). (II) State-of-the-art definition of EO Analysis Ready Data (ARD) format. (III) Horizontal policy, the goal of which is background developments, in a “seamless chain of innovation” needed for a new era of Space Economy 4.0. In the subsequent Part 2, the AutoCloud+ software system requirements specification, information/knowledge representation, system design, algorithm, implementation and preliminary experimental results are presented and discussed.


2018 ◽  
Vol 4 (1) ◽  
pp. 1467357
Author(s):  
Andrea Baraldi ◽  
Michael Laurence Humber ◽  
Dirk Tiede ◽  
Stefan Lang ◽  
Louis-Noel Moresi

2021 ◽  
Author(s):  
Estrella Olmedo ◽  
Verónica González-Gambau ◽  
Antonio Turiel ◽  
Cristina González-Haro ◽  
Aina García-Espriu ◽  
...  

Abstract. In the framework of the European Space Agency (ESA) regional initiative called Earth Observation data For Science and Innovation in the Black Sea (EO4SIBS), a new dedicated Soil Moisture and Ocean Salinity (SMOS) Sea Surface Salinity (SSS) product is generated for the Black Sea for the years 2011–2020. Three SMOS SSS fields are retrieved and distributed: a level 2 product consisting of binned SSS in daily maps at 0.25° × 0.25° spatial resolution grid by considering ascending ((Olmedo et al., 2021b), https://doi.org/10.20350/digitalCSIC/13993) and descending ((Olmedo et al., 2021c), https://doi.org/10.20350/digitalCSIC/13995) satellite overpass directions separately; a level 3 product ((Olmedo et al., 2021d), https://doi.org/10.20350/digitalCSIC/13996) consisting of binned SSS in 9-day maps at 0.25° × 0.25° grid by combining as cending and descending satellite overpass directions; and a level 4 product ((Olmedo et al., 2021e), https://doi.org/10.20350/digitalCSIC/13997) consisting of daily maps at 0.05 × 0.0505° that are computed by merging the level 3 SSS product with Sea Surface Temperature (SST) maps. The generation of SMOS SSS fields in the Black Sea requires the use of enhanced data processing algorithms for improving the Brightness Temperatures in the region since this basin is typically strongly affected by Radio Frequency Interference (RFI) sources which hinders the retrieval of salinity. Here, we describe the algorithms introduced to improve the quality of the salinity retrieval in this basin. The validation of the EO4SIBS SMOS SSS products is performed by: i) comparing the EO4SIBS SMOS SSS products with near-to-surface salinity measurements provided by in situ measurements; ii) assessing the geophysical consistency of the products by comparing them with a model and other satellite salinity measurements; iii) computing maps of SSS errors by using Correlated Triple Collocation analysis. The accuracy of the EO4SIBS SMOS SSS products depend on the time period and on the product level. The accuracy in the period 2016–2020 is better than in 2011–2015 and it is as follows for the different products: i) Level 2 ascending: 1.85 / 1.50 psu (in 2011–2015 / 2016–2020); Level 2 descending: 2.95 1.95 psu; ii) Level 3: 0.7 / 0.5 psu; and iii) Level 4: 0.6 / 0.4 psu.


2018 ◽  
Vol 4 (1) ◽  
pp. 1467254 ◽  
Author(s):  
Andrea Baraldi ◽  
Michael Laurence Humber ◽  
Dirk Tiede ◽  
Stefan Lang ◽  
Louis-Noel Moresi

Author(s):  
A. de Baraldi ◽  
Dirk Tiede ◽  
Martin Sudmanss ◽  
Mariana Belgiu ◽  
Stefan Lang

Author(s):  
Pankaj Dadheech ◽  
Dinesh Goyal ◽  
Sumit Srivastava ◽  
Ankit Kumar

Spatial queries frequently used in Hadoop for significant data process. However, vast and massive size of spatial information makes it difficult to process the spatial inquiries proficiently, so they utilized the Hadoop system for process Big Data. We have used Boolean Queries & Geometry Boolean Spatial Data for Query Optimization using Hadoop System. In this paper, we show a lightweight and adaptable spatial data index for big data which will process in Hadoop frameworks. Results demonstrate the proficiency and adequacy of our spatial ordering system for various spatial inquiries.


2021 ◽  
Vol 11 (13) ◽  
pp. 6047
Author(s):  
Soheil Rezaee ◽  
Abolghasem Sadeghi-Niaraki ◽  
Maryam Shakeri ◽  
Soo-Mi Choi

A lack of required data resources is one of the challenges of accepting the Augmented Reality (AR) to provide the right services to the users, whereas the amount of spatial information produced by people is increasing daily. This research aims to design a personalized AR that is based on a tourist system that retrieves the big data according to the users’ demographic contexts in order to enrich the AR data source in tourism. This research is conducted in two main steps. First, the type of the tourist attraction where the users interest is predicted according to the user demographic contexts, which include age, gender, and education level, by using a machine learning method. Second, the correct data for the user are extracted from the big data by considering time, distance, popularity, and the neighborhood of the tourist places, by using the VIKOR and SWAR decision making methods. By about 6%, the results show better performance of the decision tree by predicting the type of tourist attraction, when compared to the SVM method. In addition, the results of the user study of the system show the overall satisfaction of the participants in terms of the ease-of-use, which is about 55%, and in terms of the systems usefulness, about 56%.


2018 ◽  
Vol 7 (11) ◽  
pp. 428 ◽  
Author(s):  
Monika Kuffer ◽  
Jiong Wang ◽  
Michael Nagenborg ◽  
Karin Pfeffer ◽  
Divyani Kohli ◽  
...  

The continuous increase in deprived living conditions in many cities of the Global South contradicts efforts to make cities inclusive, safe, resilient, and sustainable places. Using examples of Asian, African, and Latin American cities, this study shows the scope and limits of earth observation (EO)-based mapping of deprived living conditions in support of providing consistent global information for the SDG indicator 11.1.1 “proportion of urban population living in slums, informal settlements or inadequate housing”. At the technical level, we compare several EO-based methods and imagery for mapping deprived living conditions, discussing their ability to map such areas including differences in terms of accuracy and performance at the city scale. At the operational level, we compare available municipal maps showing identified deprived areas with the spatial extent of morphological mapped areas of deprived living conditions (using EO) at the city scale, discussing the reasons for inconsistencies between municipal and EO-based maps. We provide an outlook on how EO-based mapping of deprived living conditions could contribute to a global spatial information base to support targeting of deprived living conditions in support of the SDG Goal 11.1.1 indicator, when uncertainties and ethical considerations on data provision are well addressed.


2018 ◽  
Vol 11 (8) ◽  
pp. 4693-4705 ◽  
Author(s):  
Alexandra Laeng ◽  
Ellen Eckert ◽  
Thomas von Clarmann ◽  
Michael Kiefer ◽  
Daan Hubert ◽  
...  

Abstract. The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) was an infrared limb emission spectrometer on the Envisat platform. From 2002 to 2012, it performed pole-to-pole measurements during day and night, producing more than 1000 profiles per day. The European Space Agency (ESA) recently released the new version 7 of Level 1B MIPAS spectra, in which a new set of time-dependent correction coefficients for the nonlinearity in the detector response functions was implemented. This change is expected to reduce the long-term drift of the MIPAS Level 2 data. We evaluate the long-term stability of ozone Level 2 data retrieved from MIPAS v7 Level 1B spectra with the IMK/IAA scientific level 2 processor. For this, we compare MIPAS data with ozone measurements from the Microwave Limb Sounder (MLS) instrument on NASA's Aura satellite, ozonesondes and ground-based lidar instruments. The ozonesondes and lidars alone do not allow us to conclude with enough significance that the new version is more stable than the previous one, but a clear improvement in long-term stability is observed in the satellite-data-based drift analysis. The results of ozonesondes, lidars and satellite drift analysis are consistent: all indicate that the drifts of the new version are less negative/more positive nearly everywhere above 15 km. The 10-year MIPAS ozone trends calculated from the old and the new data versions are compared. The new trends are closer to old drift-corrected trends than the old uncorrected trends were. From this, we conclude that the nonlinearity correction performed on Level 1B data is an improvement. These results indicate that MIPAS data are now even more suited for trend studies, alone or as part of a merged data record.


Sign in / Sign up

Export Citation Format

Share Document