scholarly journals Laser-Plasma and Self-Absorption Measurements with Applications to Analysis of Atomic and Molecular Stellar Astrophysics Spectra

Author(s):  
Christian Parigger ◽  
Christopher M Helstern ◽  
Ghaneshwar Gautam

This work discusses laboratory measurements of atomic and diatomic molecular species in laser-plasma generated in gases. Noticeable self-absorption of the Balmer series hydrogen alpha line occurs for electron densities of the order of one tenth of standard ambient temperature and pressure density. Emission spectra of selected diatomic molecules in air or specific gaseous mixtures at or near atmospheric pressure reveal minimal plasma re-absorption. Abel inversion of the plasma in selected gases and gas mixtures confirm expansion dynamics that unravel regions of atomic and molecular species of different electron temperature and density. Time resolved spectroscopy diagnoses self-absorption of hydrogen alpha and hydrogen beta lines in ultra-high pure hydrogen gas. Radiation from a Nd:YAG laser device induces micro-plasma for pulse widths in the range of 6 ns to 14 ns, energies in the range of 100 mJ to 800 mJ, and for peak irradiance of the order 1 to 10 TW/cm2. Atomic line profiles yield electron density and temperature from fitting of line profiles to wavelength and sensitivity corrected spectral radiance data. Analysis of measured diatomic emission data yields excitation temperature of primarily molecular recombination spectra. Applications of the laboratory experiments extend to investigations of stellar astrophysics white dwarf spectra.

Atoms ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 63 ◽  
Author(s):  
Christian G. Parigger ◽  
Christopher M. Helstern ◽  
Ghaneshwar Gautam

This work discusses laboratory measurements of atomic and diatomic molecular species in laser-plasma generated in gases. Noticeable self-absorption of the Balmer series hydrogen alpha line occurs for electron densities of the order of one tenth of standard ambient temperature and pressure density. Emission spectra of selected diatomic molecules in air or specific gaseous mixtures at or near atmospheric pressure reveal minimal plasma re-absorption. Abel inversion of the plasma in selected gases and gas mixtures confirm expansion dynamics that unravel regions of atomic and molecular species of different electron temperature and density. Time resolved spectroscopy diagnoses self-absorption of hydrogen alpha and hydrogen beta lines in ultra-high pure hydrogen gas. Radiation from a Nd:YAG laser device induces micro-plasma for pulse widths in the range of 6–14 ns, energies in the range of 100–800 mJ, and peak irradiances of the order 1–10 TW/cm 2 . Atomic line profiles yield electron density and temperature from fitting of line profiles to wavelength and sensitivity corrected spectral radiance data. Analysis of measured diatomic emission data yields excitation temperature of primarily molecular recombination spectra. Applications of the laboratory experiments extend to investigations of stellar astrophysics white dwarf spectra.


Atoms ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 46 ◽  
Author(s):  
Ghaneshwar Gautam ◽  
Christian Parigger

Micro-plasma is generated in ultra-high-pure hydrogen gas, which fills the inside of a cell at a pressure of (1.08 ± 0.033) × 105 Pa by using a Q-switched neodymium-doped yttrium-aluminum-garnet (Nd:YAG) laser device operated at a fundamental wavelength of 1064 nm and a pulse duration of 14 ns. The micro-plasma emission spectra of the hydrogen Balmer alpha line, Hα, are recorded with a Czerny–Turner type spectrometer and an intensified charge-coupled device. The spectra are calibrated for wavelength and corrected for detector sensitivity. During the first few tens of nanoseconds after the initiation of optical breakdown, the significant Stark-broadened and Stark-shifted Hα lines mark the well-above hypersonic outward expansion. The vertical diameters of the spectrally resolved plasma images are measured for the determination of expansion speeds, which were found to decrease from 100 to 10 km/s for time delays of 10 to 35 ns. For time delays of 0.5 µs to 1 µs, the expansion speed of the plasma decreases to the speed of sound of 1.3 km/s in the near ambient temperature and pressure of the hydrogen gas.


Author(s):  
Ghaneshwar Gautam ◽  
Christian G. Parigger

Micro-plasma is generated in ultra-high-pure hydrogen gas filled inside a cell at a pressure of (1.08 ± 0.033) × 105 Pa (810 ± 25 Torr) by using a Q-switched Nd:YAG laser device operated at 1064 nm wavelength and 14 ns pulse duration. Micro-plasma emission spectra of the hydrogen Balmer alpha line, Hα, are recorded with a Czerny-Turner type spectrometer and an intensified charge-coupled device. The spectra are calibrated for wavelength and corrected for detector sensitivity. During the first few tens of nanoseconds after initiating optical breakdown, significantly Stark-broadened and Stark-shifted Hα lines mark the well-above hypersonic outward expansion. The vertical diameters of the spectrally resolved plasma images are measured for time delays of 10 ns to 35 ns to determine expansion speeds of the order of 100 km/s to 10 km/s. For time delays of the order of 0.5 µs to 1 µs, the expansion decreases to the speed of sound of 1.3 km/s in the near ambient temperature and pressure hydrogen gas.


From the fact that no carbonic acid gas is given out by venous blood when that fluid is subjected to the action of the air-pump, former experimentalists had inferred that this blood contains no carbonic acid. The author of the present paper contends that this is an erroneous inference; first, by showing that serum, which had been made to absorb a considerable quantity of this gas, does not yield it upon the removal of the atmospheric pressure; and next, by adducing several experiments in proof of the strong attraction exerted on carbonic acid both by hydrogen and by oxygen gases, which were found to absorb it readily through the medium of moistened membrane. By means of a peculiar apparatus, consisting of a double-necked bottle, to which a set of bent tubes were adapted, he ascertained that venous blood, agitated with pure hydrogen gas, and allowed to remain for an hour in contact with it, imparts to that gas a considerable quantity of carbonic acid. The same result had, indeed, been obtained, in a former experiment, by the simple application of heat to venous blood confined under hydrogen gas; but on account of the possible chemical agency of heat, the inference drawn from that experiment is less conclusive than from experiments in which the air-pump alone is employed. The author found that, in like manner, atmospheric air, by remaining, for a sufficient time, in contact with venous blood, on the application of the air-pump, acquires carbonic acid. The hypothesis that the carbon of the blood attracts the oxygen of the air into the fluid, and there combines with it, and that the carbonic acid thus formed is afterwards exhaled, appears to be inconsistent with the fact that all acids, and carbonic acid more especially, impart to the blood a black colour; whereas the immediate effect of exposing venous blood to atmospheric air, or to oxygen gas, is a change of colour from a dark to a bright scarlet, implying its conversion from the venous to the arterial character: hence the author infers that the acid is not formed during the experiment in question, but already exists in the venous blood, and is extracted from it by the atmospheric air. Similar experiments made with oxygen gas, in place of atmospheric air, were attended with the like results, but in a more striking degree and tend therefore to corroborate the views entertained by the author of the theory of respiration. According to these views, it is neither in the lungs, nor generally in the course of the circulation, but only during its passage through the capillary system of vessels, that the blood undergoes the change from arterial to venous; a change consisting in the formation of carbonic acid, by the addition of particles of carbon derived from the solid textures of the body, and which had combined with the oxygen supplied by the arterial blood: and it is by this combination that heat is evolved, as well as a dark colour imparted to the blood. The author ascribes, however, the bright red colour of arterial blood, not to the action of oxygen, which is of itself completely inert as a colouring agent, but to that of the saline ingredients naturally contained in healthy blood. On arriving at the lungs, the first change induced on the blood is effected by the oxygen of the atmospheric air, and consists in the removal of the carbonic acid, which had been the source of the dark colour of the venous blood; and the second consists in the attraction by the blood of a portion of oxygen, which it absorbs from the air, and which takes the place of the carbonic acid. The peculiar texture of the lungs, and the elevation of temperature in warm-blooded animals, concur in promoting the rapid production of these changes.


2021 ◽  
pp. 38-42
Author(s):  
Boris A. Lapshinov ◽  
Nikolay I. Timchenko

The spatial characteristics of the erosion laser plasma are investigated. The application of small-sized spectrometers of the visible and ultraviolet ranges for recording the spectrum of plasma radiation is considered. Erosive laser plasma is formed on the surface of a silicon target under the action of pulsed laser radiation with a wavelength of 1064 nm under normal atmospheric conditions. The laser plasma torch was scanned using a movable slit diaphragm oriented parallel to the target surface. The emission of erosion laser plasma was recorded using small-size spectrometers. Based on the obtained plasma emission spectra, the dependences of the intensity of the spectral lines of silicon on the geometric position of the slit diaphragm are revealed. A comparison is made of the intensities of the spectral lines of silicon on the polished and grinded sides of the target.


1998 ◽  
Vol 28 (8) ◽  
pp. 685-688 ◽  
Author(s):  
O A Bukin ◽  
I V Bazarov ◽  
N S Bodin ◽  
A A Ilyin ◽  
V D Kiselev ◽  
...  

1998 ◽  
Vol 120 (3) ◽  
pp. 514-518 ◽  
Author(s):  
M. Hilton ◽  
A. H. Lettington ◽  
C. W. Wilson

Infrared (IR) spectra of the exhaust emissions from a static gas turbine engine have been studied using Fourier Transform (FT) spectroscopic techniques. Passive detection of the infrared emission from remote (range ∼ 3 m) hot exhaust gases was obtained nonintrusively using a high spectral resolution (0.25 cm−1) FTIR spectrometer. Remote gas temperatures were determined from their emission spectra using the total radiant flux method or by analysis of rotational line structure. The HITRAN database of atmospheric species was used to model the emission from gas mixtures at the relevant temperatures. The spatial distribution of molecular species across a section transverse to the exhaust plume ∼10 cm downstream of the jet pipe nozzle was studied using a tomographic reconstruction procedure. Spectra of the infrared emission from the plume were taken along a number of transverse lines of sight from the centerline of the engine outwards. A mathematical matrix inversion technique was applied to reconstruct the molecular concentrations of CO and CO2 in concentric regions about the centerline. Quantitative measurement of the molecular species concentrations determined nonintrusively were compared with results from conventional extractive sampling techniques.


2006 ◽  
Vol 986 ◽  
Author(s):  
Marilyn E. Hawley ◽  
Mary Ann Hill ◽  
Yongqiang Wang ◽  
Roland K. Schulze

AbstractUranium is an extremely important material for commercial and military applications (i.e. nuclear power, nuclear weapons, conventional weapons, and armor systems) and, like a number of other materials, is vulnerable to corrosion by environmental gases that affect their properties, leading to component degradation, shortened lifetimes and materials failure. For uranium this is particularly true in the case of corrosion by hydrogen. A fundamental understanding of the corrosion process at the nucleation stage is of critical importance. The goal of this work is to study the role of common chemical impurities in uranium with initiation sites for the formation of destructive hydride blisters. Samples were implanted with various ions, annealed under vacuum at 200°C, than exposed to one atm of ultra-pure hydrogen. Scanning force microscopy surface potential imaging was used to characterize the structure and corresponding electrical properties of polycrystalline uranium surfaces that resulted from the implantation of different suspect atoms after exposure to hydrogen gas. Surface potential images revealed features related to different oxide structures and hydride spots/blisters as well as other features not obvious in the corresponding topograph. In the surface potential images, blisters appear as bright (higher potential) features in sharp contrast to the uranium oxide background. Often a possible inclusion was observed in the center of a blister. Blister formation did not appear to correlate with implantation of any specific specie, however, distinct differences were seen between implanted and non implanted sides of the same sample.


Sign in / Sign up

Export Citation Format

Share Document