scholarly journals Silicon and Iron as Resource-Efficient Anode Materials for Ambient-Temperature Metal-Air Batteries: A Review

Author(s):  
Henning Weinrich ◽  
Yasin Emre Durmus ◽  
Hermann Tempel ◽  
Hans Kungl ◽  
Rüdiger-A. Eichel

Abstract: Metal-air batteries provide a most promising battery technology given their outstanding potential energy densities, which are desirable for both stationary and mobile applications in a ‘beyond lithium-ion’ battery market. Silicon- and iron-air batteries underwent less research and development compared to lithium- and zinc-air batteries. Nevertheless, in the recent past, the two also-ran battery systems made considerable progress and attracted rising research interest due to the excellent resource-efficiency of silicon and iron. Silicon and iron are among the top five of the most abundant elements in the earth’s crust, which ensures almost infinite material supply of the anode materials, even for large scale applications. Furthermore, primary silicon-air batteries are set to provide one of the highest energy densities among all batteries, while iron-air batteries are frequently considered as a highly rechargeable system with decent performance characteristics. Considering fundamental aspects for the anode materials, i.e., the metal electrodes, in this review, we will first outline the challenges, which explicitly apply to silicon- and iron-air batteries and prevented them from a broad implementation so far. Afterwards, we provide an extensive literature survey regarding state-of-the-art experimental approaches, which are set to resolve the aforementioned challenges and might enable the introduction of silicon- and iron-air batteries into the battery market in the future.

Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2134 ◽  
Author(s):  
Henning Weinrich ◽  
Yasin Emre Durmus ◽  
Hermann Tempel ◽  
Hans Kungl ◽  
Rüdiger-A. Eichel

Metal-air batteries provide a most promising battery technology given their outstanding potential energy densities, which are desirable for both stationary and mobile applications in a “beyond lithium-ion” battery market. Silicon- and iron-air batteries underwent less research and development compared to lithium- and zinc-air batteries. Nevertheless, in the recent past, the two also-ran battery systems made considerable progress and attracted rising research interest due to the excellent resource-efficiency of silicon and iron. Silicon and iron are among the top five of the most abundant elements in the Earth’s crust, which ensures almost infinite material supply of the anode materials, even for large scale applications. Furthermore, primary silicon-air batteries are set to provide one of the highest energy densities among all types of batteries, while iron-air batteries are frequently considered as a highly rechargeable system with decent performance characteristics. Considering fundamental aspects for the anode materials, i.e., the metal electrodes, in this review we will first outline the challenges, which explicitly apply to silicon- and iron-air batteries and prevented them from a broad implementation so far. Afterwards, we provide an extensive literature survey regarding state-of-the-art experimental approaches, which are set to resolve the aforementioned challenges and might enable the introduction of silicon- and iron-air batteries into the battery market in the future.


2021 ◽  
Vol 2 (2) ◽  

With the development of lithium-ion battery technology, silicon anode is deemed as an ideal next-generation anode materials by virtue of its extremely high specific capacity. Nevertheless, higher requirements are raised for the properties of the binder owing to the high volume change rate of silicon anode during charging and discharging and the thickening of SEI film. In respect of the binders such as polyacrylic acid (PAA), polyvinyl alcohol (PVA), sodium alginate (Alginate), sodium carboxymethylcellulose (CMC) in possession of large-scale application value, this paper studies the effects of different binders and mixed binders with different ratios on the properties of silicon anode materials. As a result, it is suggested that the binders acquired when PAA:PVA=9:1 can render it possible for the electrode to be provided with better charge-discharge cyclic performance.


2021 ◽  
Vol 2 (2) ◽  

With the development of lithium-ion battery technology, silicon anode is deemed as an ideal next-generation anode materials by virtue of its extremely high specific capacity. Nevertheless, higher requirements are raised for the properties of the binder owing to the high volume change rate of silicon anode during charging and discharging and the thickening of SEI film. In respect of the binders such as polyacrylic acid (PAA), polyvinyl alcohol (PVA), sodium alginate (Alginate), sodium carboxymethylcellulose (CMC) in possession of large-scale application value, this paper studies the effects of different binders and mixed binders with different ratios on the properties of silicon anode materials. As a result, it is suggested that the binders acquired when PAA:PVA=9:1 can render it possible for the electrode to be provided with better charge-discharge cyclic performance.


Carbon ◽  
2013 ◽  
Vol 64 ◽  
pp. 158-169 ◽  
Author(s):  
Shuangqiang Chen ◽  
Peite Bao ◽  
Linda Xiao ◽  
Guoxiu Wang

2011 ◽  
Vol 509 (20) ◽  
pp. 5969-5973 ◽  
Author(s):  
Fei Wang ◽  
Gang Yao ◽  
Minwei Xu ◽  
Mingshu Zhao ◽  
Zhanbo Sun ◽  
...  

2018 ◽  
Vol 6 (39) ◽  
pp. 18920-18927 ◽  
Author(s):  
Zhongtao Li ◽  
Jianze Feng ◽  
Han Hu ◽  
Yunfa Dong ◽  
Hao Ren ◽  
...  

The natural abundance of sodium resources makes sodium-ion batteries a potential and promising alternative to lithium ion battery technology for large-scale energy storage application.


RSC Advances ◽  
2015 ◽  
Vol 5 (10) ◽  
pp. 7356-7362 ◽  
Author(s):  
Minchan Li ◽  
Wenxi Wang ◽  
Mingyang Yang ◽  
Fucong Lv ◽  
Lujie Cao ◽  
...  

A novel microcuboid-shaped C–Fe3O4 assembly consisting of ultrafine nanoparticles derived from Fe–MOFs exhibits a greatly enhanced performance with high specific capacity, excellent cycling stability and good rate capability as anode materials for lithium ion batteries.


2017 ◽  
Vol 20 (4) ◽  
pp. 223-230 ◽  
Author(s):  
Keqiang Ding ◽  
Binjuan Wei ◽  
Yan Zhang ◽  
Chenxue Li ◽  
Xiaomi Shi ◽  
...  

A novel finding, that the calcined weathered stones (denoted as CWS) can be employed as the anode materials for lithium ion batteries (LIBs), is reported for the first time in this work. Under the air conditions, the weathered stones were respectively calcined at 400ºC (sample a), 600ºC (sample b) and 800ºC (sample c) for 2 h, with an intention to examine the influence of the calcination temperature on the physicochemical properties of the resultant materials. XRD results indicated that the main components of all the final products were SiO2. And the SEM images demonstrated that all the as-prepared samples were irregular and larger particles with no evident crystal structure. The results of the electrochemical measurements revealed that the initial discharge capacity of sample b was about 104 mAh g-1 at the current density of 100 mA g-1, which was remarkably larger than that of the employed pure SiO2 (50 mAh g-1). Interestingly, after 20 cycles, the discharge capacity of sample b was still maintained as high as 70 mAh g-1, along with a capacity retention rate of about 70%. Although the discharge capacity reported here was lower as compared to the currently reported anode materials, this novel finding was very meaningful to the large scale production of anode materials, mainly due to the rather lower cost and abundant resources as well as the simple preparation process.


Sign in / Sign up

Export Citation Format

Share Document