scholarly journals Exponential Disruptive Technologies and the Required Skills of Industry 4.0: A Review

Author(s):  
Ocident Bongomin ◽  
Gilbert Gilibrays Ocen ◽  
Eric Oyondi Nganyi ◽  
Alex Musinguzi ◽  
Timothy Omara

The 21st century has witnessed a number of incredible changes ranging from the way of life and the technologies that emerged. Currently, we have entered a new paradigm shift called industry 4.0 where science fictions have become science facts, and technology fusion is the main driver. Therefore, ensuring that any advancement in technology reach and benefit all is the ideal opportunity for everyone. In this paper, disruptive technologies of industry 4.0 have been explored and quantified in terms of the number of their appearances in literature. This research mainly aimed at identifying industry 4.0 key technologies which have been ill-defined by previous researchers and to enlighten the required skills of industry 4.0. Comprehensive literature survey covering the field of engineering, production, and management from both academia and business was done from publication databases: Google scholar, ScienceDirect, Scopus, Sage, Taylor & Francis and Emerald insight. The results of the study show that 35 disruptive technologies were quantified and 13 key technologies: Internet of things, Big data, 3D printing, Cloud computing, Autonomous robots, Virtual and augmented reality, Cyber physical system, Artificial intelligence, Smart sensors, Simulation, Nanotechnology, Drones and Biotechnology were identified. Moreover, both technical and personal skills to be imparted into the human workforce for industry 4.0 were identified. The study reveals the need to investigate the capabilities and the readiness of some developing countries in adapting industry 4.0 in terms of the changes in the education systems and industrial manufacturing settings. In addition, the study proposes the need to address the ways for integration of industry 4.0 concepts into the current education system.

2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Ocident Bongomin ◽  
Gilbert Gilibrays Ocen ◽  
Eric Oyondi Nganyi ◽  
Alex Musinguzi ◽  
Timothy Omara

The 21st century has witnessed precipitous changes spanning from the way of life to the technologies that emerged. We have entered a nascent paradigm shift (industry 4.0) where science fictions have become science facts, and technology fusion is the main driver. Thus, ensuring that any advancement in technology reach and benefit all is the ideal opportunity for everyone. In this study, disruptive technologies of industry 4.0 were explored and quantified in terms of the number of their appearances in published literature. The study aimed at identifying industry 4.0 key technologies which have been ill-defined by previous researchers and to enumerate the required skills of industry 4.0. Comprehensive literature survey covering the field of engineering, production, and management was done in multidisciplinary databases: Google Scholar, Science Direct, Scopus, Sage, Taylor & Francis, and Emerald Insight. From the electronic survey, 35 disruptive technologies were quantified and 13 key technologies: Internet of Things, Big Data, 3D printing, Cloud computing, Autonomous robots, Virtual and Augmented reality, Cyber-physical system, Artificial intelligence, Smart sensors, Simulation, Nanotechnology, Drones, and Biotechnology were identified. Both technical and personal skills to be imparted into the human workforce for industry 4.0 were reported. The review identified the need to investigate the capability and the readiness of developing countries in adapting industry 4.0 in terms of the changes in the education systems and industrial manufacturing settings. This study proposes the need to address the integration of industry 4.0 concepts into the current education system.


Author(s):  
Ocident Bongomin ◽  
Gilbert Gilibrays Ocen ◽  
Eric Oyondi Nganyi ◽  
Alex Musinguzi ◽  
Timothy Omara

The 21st century has witnessed precipitous changes spanning from the way of life to the technologies that emerged. We have entered a nascent paradigm shift (industry 4.0) where science fictions have become science facts, and technology fusion is the main driver. Thus, ensuring that any advancement in technology reach and benefit all is the ideal opportunity for everyone. In this study, disruptive technologies of industry 4.0 was explored and quantified in terms of the number of their appearances in published literature. The study aimed at identifying industry 4.0 key technologies which have been ill-defined by previous researchers and to enumerate the required skills of industry 4.0. Comprehensive literature survey covering the field of engineering, production, and management was done from multidisciplinary databases: Google scholar, ScienceDirect, Scopus, Sage, Taylor & Francis and Emerald insight. Results of the electronic survey showed that 35 disruptive technologies were quantified and 13 key technologies: Internet of things, Big data, 3D printing, Cloud computing, Autonomous robots, Virtual and Augmented reality, Cyber physical system, Artificial intelligence, Smart sensors, Simulation, Nanotechnology, Drones and Biotechnology were identified. Both technical and personal skills to be imparted into the human workforce for industry 4.0 were reported. The study identified the need to investigate the capability and the readiness of developing countries in adapting industry 4.0 in terms of the changes in the education systems and industrial manufacturing settings. The study proposes the need to address integration of industry 4.0 concepts into the current education system.


2019 ◽  
Vol 12 (1) ◽  
pp. 77-87
Author(s):  
György Kovács ◽  
Rabab Benotsmane ◽  
László Dudás

Recent tendencies – such as the life-cycles of products are shorter while consumers require more complex and more unique final products – poses many challenges to the production. The industrial sector is going through a paradigm shift. The traditional centrally controlled production processes will be replaced by decentralized control, which is built on the self-regulating ability of intelligent machines, products and workpieces that communicate with each other continuously. This new paradigm known as Industry 4.0. This conception is the introduction of digital network-linked intelligent systems, in which machines and products will communicate to one another in order to establish smart factories in which self-regulating production will be established. In this article, at first the essence, main goals and basic elements of Industry 4.0 conception is described. After it the autonomous systems are introduced which are based on multi agent systems. These systems include the collaborating robots via artificial intelligence which is an essential element of Industry 4.0.


Author(s):  
E. N. Lapteva ◽  
O. V. Nasarochkina

The paper deals with problem analysis due to domestic engineering transition to the Industry 4.0 technology. It presents such innovative technologies as additive manufacturing (3D-printing), Industrial Internet of Things, total digitization of manufacturing (digital description of products and processes, virtual and augmented reality). Among the main highlighted problems the authors include a lack of unification and standardization at this stage of technology development; incompleteness of both domestic and international regulatory framework; shortage of qualified personnel.


2020 ◽  
Vol 26 (2) ◽  
pp. 288-293
Author(s):  
Codrin-Leonard Herţanu

AbstractOur contemporary world is on the verge of crucial changes of an unparalleled pace. The ‘technological changeover’ is the new paradigm caused by the unprecedented evolution of the disruptive technologies. The present world has the tendency to evolve at least exponential, therefore future educational environment is fairly different than its present layout. An entire array of nowadays studies widely recognizes that the progress of the disruptive technologies will pose a meaningful impact over the educational system evolution. Among the most spectacular technologies with disruptive features we should encounter Artificial Intelligence, Blockchain Technology, Cloud Computing, and the like. In an era of technological disruption the education is seen as the new currency. With the help of Artificial Intelligence, for instance, the education system could track how people learn from kindergarten to retirement. Besides, the technology domain will move the centre of gravity from the institutional area to that of the education’s beneficiaries, as we might expect that they will recruit and employ the needed teacher staff, not the institutions. Moreover, the education’s recipients will be the main creators of tomorrow’s professions and within their community the overarching events will happen and the main decisions will be taken in the educational domain.


2021 ◽  
Vol 113 (7-8) ◽  
pp. 2395-2412
Author(s):  
Baudouin Dafflon ◽  
Nejib Moalla ◽  
Yacine Ouzrout

AbstractThis work aims to review literature related to the latest cyber-physical systems (CPS) for manufacturing in the revolutionary Industry 4.0 for a comprehensive understanding of the challenges, approaches, and used techniques in this domain. Different published studies on CPS for manufacturing in Industry 4.0 paradigms through 2010 to 2019 were searched and summarized. We, then, analyzed the studies at a different granularity level inspecting the title, abstract, and full text to include in the prospective study list. Out of 626 primarily extracted relevant articles, we scrutinized 78 articles as the prospective studies on CPS for manufacturing in Industry 4.0. First, we analyzed the articles’ context to identify the major components along with their associated fine-grained constituents of Industry 4.0. Then, we reviewed different studies through a number of synthesized matrices to narrate the challenges, approaches, and used techniques as the key-enablers of the CPS for manufacturing in Industry 4.0. Although the key technologies of Industry 4.0 are the CPS, Internet of Things (IoT), and Internet of Services (IoS), the human component (HC), cyber component (CC), physical component (PC), and their HC-CC, CC-PC, and HC-PC interfaces need to be standardized to achieve the success of Industry 4.0.


Author(s):  
Petar Radanliev ◽  
David De Roure ◽  
Razvan Nicolescu ◽  
Michael Huth ◽  
Omar Santos

AbstractThis paper presents a new design for artificial intelligence in cyber-physical systems. We present a survey of principles, policies, design actions and key technologies for CPS, and discusses the state of art of the technology in a qualitative perspective. First, literature published between 2010 and 2021 is reviewed, and compared with the results of a qualitative empirical study that correlates world leading Industry 4.0 frameworks. Second, the study establishes the present and future techniques for increased automation in cyber-physical systems. We present the cybersecurity requirements as they are changing with the integration of artificial intelligence and internet of things in cyber-physical systems. The grounded theory methodology is applied for analysis and modelling the connections and interdependencies between edge components and automation in cyber-physical systems. In addition, the hierarchical cascading methodology is used in combination with the taxonomic classifications, to design a new integrated framework for future cyber-physical systems. The study looks at increased automation in cyber-physical systems from a technical and social level.


2021 ◽  
Author(s):  
Shyam Manikanawar ◽  
Vinayak N. Kulkarni ◽  
V. N. Gaitonde ◽  
G. Jangali Satish ◽  
B. B. Kotturshettar

2012 ◽  
Vol 11 (1-2) ◽  
pp. 219-246 ◽  
Author(s):  
Ahmad Noor Sulastry Yurni

Abstract Abstract The Malays, Chinese and Indian community in Malaysia have been homogenized since British colonialism. The existence of Indian Muslims’ identity caused a new paradigm shift in Malaysia involving the racial discussion. This paper traces the difference in Indian Muslims’ identities from Indian and the Hindus. I argued that Indian Muslims share Islam as their religion and faith, while maintaining a Malay way of life and custom in their daily practices. In Malaysia, the Indian Muslim community struggled to place their future in terms of social, economic allocation and political justification among the other communities. However, the strength of ethnic politics clearly charted out their involvement in the political base and moved them to fight for their cause and rights. Hence, today’s Indian Muslim community has caused an Islamic resurgence, which has brought a new Indian dimension as a whole.


Sign in / Sign up

Export Citation Format

Share Document