scholarly journals Finishing of Nickel Matrix Composite Coatings

Author(s):  
Tomasz Dyl ◽  
Robert Starosta

Metal matrix composite are used in such fields of technology, such as: aerospace, electronics, energy, industry, defense, automotive, aviation, shipbuilding, and more. Composite coatings of ceramic - metals is used primarily to enhance the durability of machine parts. Therefore, new materials are permanently looked for, what has resulted in the past in development of composite materials. The coatings dispersed are consisting of metallic matrix (metals and their alloys) and small non-metallic particles. The deposition of ceramic particles simultaneously with metallic matrix leads often to composite coatings possessing properties much better than those of metallic coating. The nickel and less often, other iron group elements are usually used as a matrix and Al2O3 as tough particles. The welding technology of applying alloy and composite coatings is widely used. The technology of infrasound thermal spraying of metal matrix composite coatings was presented. It is a simple technology and a very useful one in ship machinery regeneration during the cruise craft (e.g. internal combustion engines, torque pumps, separators). The metal matrix composite coatings must undergo finishing due to high surface roughness after application. In the article to used finishing by plastic working and machining of coatings nickel matrix composite was proposed.

2014 ◽  
Vol 665 ◽  
pp. 56-62
Author(s):  
Jian Jun Fan ◽  
Yun Jing Song ◽  
Zhuo Xin Li

There are relevant reports on preparing TiB2 particle reinforced metal matrix composite (MMC) anti-wearing coating by plasma spraying and HVOF spraying methods successfully. The research uses electric arc spraying with low cost and convenient operation to prepare four TiB2 particle reinforced composite coatings with high bonding strength and uniform microstructure. It makes comparative study on elevated temperature erosion actions of coating and 45CT of electric arc spraying. The results indicate the coating has excellent erosion wearing resistance. TiB2 particles in M-TiB2 coating have small size, have good unity with metallic matrix, and are distributed on metallic matrix with high hardness relatively uniformly, and porosity of coating is low. Such MMC coating microstructure feature avoids micro-cutting of coating effectively, and reduces plastic deformation and material transfer of wearing surface. The coating has excellent erosion resistance.


2021 ◽  
Author(s):  
Saman Sayahlatifi ◽  
Chenwei Shao ◽  
André McDonald ◽  
James David Hogan

Abstract This study developed microstructure-based finite element (FE) models to investigate the behavior of cold-sprayed aluminum-alumina (Al-Al2O3) metal matrix composite (MMCs) coatings subject to indentation and quasi-static compression. Based on microstructural features (i.e., particle weight fraction, particle size, and porosity) of the MMC coatings, representative volume elements (RVEs) were generated by using Digimat software and then imported into ABAQUS/Explicit. State-of-the-art physics-based modelling approaches were incorporated into the model to account for particle cracking, interface debonding, and ductile failure of the matrix. This allowed for analysis and informing on the deformation and failure responses. The model was validated with experimental results for cold-sprayed Al-18 wt.% Al2O3, Al-34 wt.% Al2O3, and Al-46 wt.% Al2O3 metal matrix composite coatings under quasi-static compression by comparing the stress versus strain histories and observed failure mechanisms (e.g., matrix ductile failure). The results showed that the computational framework is able to capture the response of this cold-sprayed material system under compression and indentation, both qualitatively and quantitatively. The outcomes of this work have implications for extending the model to materials design and under different types of loading (e.g., erosion and fatigue).


Sign in / Sign up

Export Citation Format

Share Document