scholarly journals Analysis of the PAPR Behavior of the OFDM Passband Signal

Author(s):  
Frank Andrés Eras ◽  
Italo Alexander Carreño ◽  
Thomás Borja ◽  
Diego Javier Reinoso ◽  
Luis Urquiza-Aguiar ◽  
...  

Orthogonal Frequency Division Multiplexing (OFDM) is a technique widely used in today's wireless communication systems due to its ability to combat the effects of multi-path in the signal. However, one of the main limitations of the use of OFDM is its high Peak-to-Average Power Ratio (PAPR), which reduces the efficiency of the OFDM system. The effects of PAPR can produce both out-of-band and in-band radiation, which degrades the signal by increasing the bit error rate (BER), this occurs in both baseband and bandpass sginals. In this document the effect of the PAPR in a OFDM passband signal is analyzed considering the implementation of a High Power Amplifier (HPA) and the Simple Amplitude Predistortion-Orthogonal Pilot Sequences (OPS-SAP) scheme to reduce the PAPR.

2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Qinbiao Yang ◽  
Zulin Wang ◽  
Qin Huang

Orthogonal frequency division multiplexing (OFDM) usually suffers high peak-to-average power ratio (PAPR). As shown in this paper, PAPR becomes even severe for sparse source due to many identical nonzero frequency OFDM symbols. Thus, this paper introduces compressive coded modulation (CCM) in order to restrain PAPR by reducing identical nonzero frequency symbols for sparse source. As a result, the proposed CCM-based OFDM system, together with iterative clipping and filtering, can efficiently restrain the high PAPR for sparse source. Simulation results show that it outperforms about 4 dB over the traditional OFDM system when source sparsity is 0.1.


2019 ◽  
Vol 16 (2) ◽  
pp. 484-488
Author(s):  
K. Rajasekhar ◽  
Prabhakara B. Rao

In Orthogonal Frequency Division Multiplexing (OFDM) based systems, with the increasing demand for data rate and reliability in Wireless communications and devices, several issues become very important like bandwidth efficiency, quality of service and radio coverage. However, OFDM is very sensitive to nonlinear effects due to the high peak-to-average power ratio (PAPR) owned by the transmitted signals and does not show robustness to spectral null channels. This paper proposes a novel BPSK OFDM system based on Haar wavelet transformation. The PAPR reduced by 10 log10 2 ≈ 3 dB at most, compared with the conventional OFDM system and shows robustness to spectral null channels, improving BER performance 3 dB at most. Finally, theoretical and simulated results of the Cumulative Distribution Functions (CDFs) of both Conventional and Proposed OFDM are compared to show that the Proposed OFDM has better performance than the Conventional OFDM.


2010 ◽  
Vol 44 (4) ◽  
pp. 30-41 ◽  
Author(s):  
Guillem Rojo ◽  
Milica Stojanovic

AbstractOrthogonal frequency division multiplexing (OFDM) is an appealing modulation scheme for high-rate underwater acoustic communications that are challenged by multipath propagation. However, it has a drawback in the large peak-to-average power ratio (PAR). Techniques for PAR reduction have been extensively studied for radio communication systems. Although these techniques are applicable to acoustic systems, we take a different approach that aims to capitalize on the fundamental differences between the acoustic and the radio systems; namely, the fact that acoustic transmissions are inherently band limited. We extend the tone reservation technique to the out-of-band carriers and design efficient methods for constructing OFDM signals with lower PAR. Two approaches are investigated, one based on a gradient algorithm and another that uses random sequences. Simulation results show that our techniques can provide PAR reduction without the loss in data rate.


YMER Digital ◽  
2021 ◽  
Vol 20 (12) ◽  
pp. 856-866
Author(s):  
Malleswari Akurati ◽  
◽  
Satish Kumar Pentamsetty ◽  
Satya Prasad Kodati ◽  
◽  
...  

Orthogonal Frequency Division Multiplexing (OFDM) contribute high data rates in current as well as future wireless communication systems but it aches from high Peak to Average Power Ratio (PAPR). But this high PAPR makes the High-Power Amplifier (HPA) complex which increases the cost of it and leads to the drawbacks like Inter Carrier Interference (ICI) and rise in out of band radiation. Even though many techniques are there to decrease the complexity of HPA by reducing the PAPR, Selected Mapping (SLM) and the Partial Transmit Sequence (PTS) provides less PAPR with low complexity. In this paper, both PTS and SLM are combined with Discrete Sine Transform (DST) and their PAPR and efficiencies are also compared with OFDM signal. The proposed hybrid DST-PTS and DST-SLM provides less PAPR compared to OFDM, SLM and PTS techniques with low complexity. Also, the bit error rate for DST-SLM and DST-PTS techniques are compared for different values of SNR. In future wireless communication systems, these proposed techniques can be used as they provide less bit error rate and less PAPR with low complexity


An analysis on Spectrally Efficient Frequency Division Multiplexing (SEFDM) is contrast with Orthogonal Frequency Division Multiplexing (OFDM) considering the impact on Peak to Average Power Ratio (PAPR) and nonlinearities within fibre. With respect to OFDM the sub-carriers in SEFDM signals are compressed adjacent to each other at a rate of frequency lesser than the symbol rate. At the receiver end we have utilized the Sphere Decoder which is used to recover the data to remunerate the Interference created by the compressed signals (ICI) faced in the system. This research shows the advantages by using SEFDM and evaluates its achievement. PAPR. when compared with OFDM, while effects of non-linear fibres are considered. The use of various formats of modulation going from 4-QAM to 32-QAM, shows that the SEFDM signals have a noteworthy increment in the transmission length with respect to ordinary signals.


Author(s):  
PRITANJALI KUMARI ◽  
US TRIAR

Orthogonal Frequency Division Multiplexing (OFDM), widely used in digital wireless communication, has a major drawback of high Peak to Average Power Ratio (PAPR). A reduced complexity partial transmit sequence (PTS) scheme has been proposed to solve high peak to average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) system. In the proposed PTS scheme, a function is generated by summing the power of time domain samples at time ‘n’ in each sub blocks, known as “Hn”.Only those samples, having Hn greater than or equal to a preset threshold value (αT) are used for peak power calculation during the process of selecting a candidate signal with the lowest PAPR for transmission. As compared to conventional PTS scheme, the proposed scheme achieves almost the same PAPR reduction performance with much lower computational complexity.


Sign in / Sign up

Export Citation Format

Share Document