scholarly journals In Silico Epitope-Based Peptide Vaccine Design against Invasive Non Typhoidal Salmonella (iNTS) Through Immunoinformatic Approaches

Author(s):  
Md. Chayan Ali ◽  
Sultana Israt Jahan ◽  
Mst. Shanzeda Khatun ◽  
Raju Das ◽  
Md Mafizur Rahman ◽  
...  

Salmonella, especially invasive non-typhoidal Salmonella (iNTS) are responsible for developing various invasive diseases, and possess higher mortality rate, due to their higher antibiotic resistance profile than the other bacteria. Therefore, the present study was concerned to develop epitope based peptide vaccine against iNTS species as a successive and substitute protective measures. The study considered comprehensive Immunoinformatic approaches, followed by molecular docking and molecular dynamics simulation to predict the efficient vaccine candidate T cell and B cell epitopes, based on the outer membrane proteins. The study identified two best epitopes YGIFAITAL and KVLYGIFAI from total iNTS outer membrane proteins, which showed higher immunity, non-allergenicity, non-toxicity and also showed higher conservancy and population coverage values. Both epitopes showed higher binding affinity and stability towards HLA-C* 03:03. The MM-PBSA binding free energy showed the YGIFAITAL epitope binds more tightly with both MHC-I and MHC-II molecules. The total contact, H-bond analysis and RMSF results also validate the efficiency of these epitopes as vaccine candidate. The projected B cell epitopes AAPVQVGEAAGS, TGGGDGSNT and TGGGDGSNTGTTTT showed higher antigenicity. Overall, the study concluded that these epitopes can be considered as the potential vaccine candidate to make a successive vaccine against iNTS species. However, this result further needs to be validate by wet lab research to make successive vaccine with these projected epitopes.

Pathogens ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1250
Author(s):  
Sílvia da Silva Fontes ◽  
Fernanda de Moraes Maia ◽  
Laura Santa’Anna Ataides ◽  
Fernando Paiva Conte ◽  
Josué da Costa Lima-Junior ◽  
...  

Coxiella burnetii is a global, highly infectious intracellular bacterium, able to infect a wide range of hosts and to persist for months in the environment. It is the etiological agent of Q fever—a zoonosis of global priority. Currently, there are no national surveillance data on C. burnetii’s seroprevalence for any South American country, reinforcing the necessity of developing novel and inexpensive serological tools to monitor the prevalence of infections among humans and animals—especially cattle, goats, and sheep. In this study, we used immunoinformatics and computational biology tools to predict specific linear B-cell epitopes in three C. burnetii outer membrane proteins: OMP-H (CBU_0612), Com-1 (CBU_1910), and OMP-P1 (CBU_0311). Furthermore, predicted epitopes were tested by ELISA, as synthetic peptides, against samples of patients reactive to C. burnetii in indirect immunofluorescence assay, in order to evaluate their natural immunogenicity. In this way, two linear B-cell epitopes were identified in each studied protein (OMP-H(51–59), OMP-H(91–106), Com-1(57–76), Com-1(191–206), OMP-P1(197–209), and OMP-P1(215–227)); all of them were confirmed as naturally immunogenic by the presence of specific antibodies in 77% of studied patients against at least one of the identified epitopes. Remarkably, a higher frequency of endocarditis cases was observed among patients who presented an intense humoral response to OMP-H and Com-1 epitopes. These data confirm that immunoinformatics applied to the identification of specific B-cell epitopes can be an effective strategy to improve and accelerate the development of surveillance tools against neglected diseases.


2020 ◽  
Author(s):  
Onyeka S. Chukwudozie ◽  
Clive M. Gray ◽  
Tawakalt A. Fagbayi ◽  
Rebecca C. Chukwuanukwu ◽  
Victor O. Oyebanji ◽  
...  

ABSTRACTDeveloping an efficacious vaccine to SARS-CoV-2 infection is critical to stem COVID-19 fatalities and providing the global community with immune protection. We have used a bioinformatic approach to aid in the design of an epitope peptide-based vaccine against the spike protein of the virus. Five antigenic B cell epitopes with viable antigenicity and a total of 27 discontinuous B cell epitopes were mapped out structurally in the spike protein for antibody recognition. We identified eight CD8+ T cell 9-mers along with 12 CD4+ T cell 14-15-mer as promising candidate epitopes putatively restricted by a large number of MHC-I and II alleles respectively. We used this information to construct an in silico chimeric peptide vaccine whose translational rate was highly expressed when cloned in pET28a (+) vector. The vaccine construct was predicted to elicit high antigenicity and cell-mediated immunity when given as a homologous prime-boost, with triggering of toll-like receptor 5 by the adjuvant linker. The vaccine was characterized by an increase in IgM and IgG and an array of Th1 and Th2 cytokines. Upon in silico challenge with SARS-CoV-2, there was a decrease in antigen levels using our immune simulations. We therefore propose that potential vaccine designs consider this approach.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248061
Author(s):  
Onyeka S. Chukwudozie ◽  
Clive M. Gray ◽  
Tawakalt A. Fagbayi ◽  
Rebecca C. Chukwuanukwu ◽  
Victor O. Oyebanji ◽  
...  

Developing an efficacious vaccine for SARS-CoV-2 infection is critical to stemming COVID-19 fatalities and providing the global community with immune protection. We have used a bioinformatic approach to aid in designing an epitope peptide-based vaccine against the spike protein of the virus. Five antigenic B cell epitopes with viable antigenicity and a total of 27 discontinuous B cell epitopes were mapped out structurally in the spike protein for antibody recognition. We identified eight CD8+ T cell 9-mers and 12 CD4+ T cell 14-15-mer as promising candidate epitopes putatively restricted by a large number of MHC I and II alleles, respectively. We used this information to construct an in silico chimeric peptide vaccine whose translational rate was highly expressed when cloned in pET28a (+) vector. With our In silico test, the vaccine construct was predicted to elicit high antigenicity and cell-mediated immunity when given as a homologous prime-boost, triggering of toll-like receptor 5 by the adjuvant linker. The vaccine was also characterized by an increase in IgM and IgG and an array of Th1 and Th2 cytokines. Upon in silico challenge with SARS-CoV-2, there was a decrease in antigen levels using our immune simulations. We, therefore, propose that potential vaccine designs consider this approach.


Author(s):  
Shobana Sundar ◽  
Lokesh Thangamani ◽  
Shanmughavel Piramanayagam

AbstractNovel vaccines are required to effectively combat the epidemic spread of tuberculosis. Using in silico approaches, this study focuses on prediction of potential B cell and T cell binding immunogenic epitopes for 30 putative outer membrane proteins of Mtb. Among these, certain immunodominant epitopes of Rv0172, Rv0295c, Rv1006, Rv2264c, and Rv2525c were found, which are capable of binding B-cell and a maximum number of MHC alleles. The selected immunodominant epitopes were screened for their allergenic and antigenic properties, their percentage identity against the human proteome and their structural properties. Further, the binding efficacy of the immunodominant epitopes of Rv0295c and Rv1006 with HLA-DRB1*04:01 was analyzed using molecular docking and molecular dynamics studies. Hence, the in silico-derived immunogenic peptides (epitopes) could potentially be used for the design of subunit vaccines against tuberculosis.


2012 ◽  
Vol 149 (3-4) ◽  
pp. 298-301 ◽  
Author(s):  
Biswajit Maiti ◽  
Mahesh Shetty ◽  
Malathi Shekar ◽  
Iddya Karunasagar ◽  
Indrani Karunasagar

Vaccine ◽  
2014 ◽  
Vol 32 (46) ◽  
pp. 6115-6121 ◽  
Author(s):  
Chuchu Li ◽  
Zhicang Ye ◽  
Liangyou Wen ◽  
Ran Chen ◽  
Lihua Tian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document