scholarly journals Mapping the minimal murine T cell and B cell epitopes within a peptide vaccine candidate from the conserved region of the M protein of group A streptococcus

1997 ◽  
Vol 9 (11) ◽  
pp. 1723-1733 ◽  
Author(s):  
W. Hayman
2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Muhammad Tahir ul Qamar ◽  
Saman Saleem ◽  
Usman Ali Ashfaq ◽  
Amna Bari ◽  
Farooq Anwar ◽  
...  

Abstract Background Middle East Respiratory Syndrome Coronavirus (MERS-COV) is the main cause of lung and kidney infections in developing countries such as Saudi Arabia and South Korea. This infectious single-stranded, positive (+) sense RNA virus enters the host by binding to dipeptidyl-peptide receptors. Since no vaccine is yet available for MERS-COV, rapid case identification, isolation, and infection prevention strategies must be used to combat the spreading of MERS-COV infection. Additionally, there is a desperate need for vaccines and antiviral strategies. Methods The present study used immuno-informatics and computational approaches to identify conserved B- and T cell epitopes for the MERS-COV spike (S) protein that may perform a significant role in eliciting the resistance response to MERS-COV infection. Results Many conserved cytotoxic T-lymphocyte epitopes and discontinuous and linear B-cell epitopes were predicted for the MERS-COV S protein, and their antigenicity and interactions with the human leukocyte antigen (HLA) B7 allele were estimated. Among B-cell epitopes, QLQMGFGITVQYGT displayed the highest antigenicity-score, and was immensely immunogenic. Among T-cell epitopes, MHC class-I peptide YKLQPLTFL and MHC class-II peptide YCILEPRSG were identified as highly antigenic. Furthermore, docking analyses revealed that the predicted peptides engaged in strong bonding with the HLA-B7 allele. Conclusion The present study identified several MERS-COV S protein epitopes that are conserved among various isolates from different countries. The putative antigenic epitopes may prove effective as novel vaccines for eradication and combating of MERS-COV infection.


2020 ◽  
Author(s):  
Onyeka S. Chukwudozie ◽  
Clive M. Gray ◽  
Tawakalt A. Fagbayi ◽  
Rebecca C. Chukwuanukwu ◽  
Victor O. Oyebanji ◽  
...  

ABSTRACTDeveloping an efficacious vaccine to SARS-CoV-2 infection is critical to stem COVID-19 fatalities and providing the global community with immune protection. We have used a bioinformatic approach to aid in the design of an epitope peptide-based vaccine against the spike protein of the virus. Five antigenic B cell epitopes with viable antigenicity and a total of 27 discontinuous B cell epitopes were mapped out structurally in the spike protein for antibody recognition. We identified eight CD8+ T cell 9-mers along with 12 CD4+ T cell 14-15-mer as promising candidate epitopes putatively restricted by a large number of MHC-I and II alleles respectively. We used this information to construct an in silico chimeric peptide vaccine whose translational rate was highly expressed when cloned in pET28a (+) vector. The vaccine construct was predicted to elicit high antigenicity and cell-mediated immunity when given as a homologous prime-boost, with triggering of toll-like receptor 5 by the adjuvant linker. The vaccine was characterized by an increase in IgM and IgG and an array of Th1 and Th2 cytokines. Upon in silico challenge with SARS-CoV-2, there was a decrease in antigen levels using our immune simulations. We therefore propose that potential vaccine designs consider this approach.


2021 ◽  
Author(s):  
Kaveri Krishnasamy ◽  
Gracy Fathima Selvaraj ◽  
Kiruba Ramesh ◽  
Padmaoriya Padmanabhan ◽  
Vidya Gopalan ◽  
...  

The emergence of a novel coronavirus in China in late 2019 has turned into a SARS-CoV-2 pandemic affecting several millions of people worldwide in a short span of time with high fatality. The crisis is further aggravated by the emergence and evolution of new variant SARS-CoV-2 strains in UK during December, 2020 followed by their transmission to other countries. A major concern is that prophylaxis and therapeutics are not available yet to control and prevent the virus which is spreading at an alarming rate, though several vaccine trials are in the final stage. As vaccines are developed through various strategies, their immunogenic potential may drastically vary and thus pose several challenges in offering both arms of immunity such as humoral and cell-mediated immune responses against the virus. In this study, we adopted an immunoinformatics-aided identification of B cell and T cell epitopes in the Spike protein, which is a surface glycoprotein of SARS-CoV-2, for developing a new Multiepitope vaccine construct (MEVC). MEVC has 575 amino acids and comprises adjuvants and various cytotoxic T-lymphocyte (CTL), helper T-lymphocyte (HTL), and B-cell epitopes that possess the highest affinity for the respective HLA alleles, assembled and joined by linkers. The computational data suggest that the MEVC is non-toxic, non-allergenic and thermostable with the capability to elicit both humoral and cell-mediated immune responses. The population coverage of various countries affected by COVID-19 with respect to the selected B and T cell epitopes in MEVC was also investigated. Subsequently, the biological activity of MEVC was assessed by bioinformatic tools using the interaction between the vaccine candidate and the innate immune system receptors TLR3 and TLR4. The epitopes of the construct were analyzed with that of the strains belonging to various clades including the new variant UK strain having multiple unique mutations in S protein. Due to the advantageous features, the MEVC can be tested in vitro for more practical validation and the study offers immense scope for developing a potential vaccine candidate against SARS-CoV-2 in view of the public health emergency associated with COVID-19 disease caused by SARS-CoV-2.


2021 ◽  
Vol 10 (1) ◽  
pp. 06-13
Author(s):  
Viol Dhea Kharisma ◽  
Arif Nur Muhammad Ansori ◽  
Gabrielle Ann Villar Posa ◽  
Wahyu Choirur Rizky ◽  
Sofy Permana ◽  
...  

Acquired immune deficiency syndrome (AIDS) has been identified from US patients since 1981. AIDS is caused by infection with the human immunodeficiency virus type 1 (HIV-1) which is a retrovirus. HIV-1 gp120 can be recognized by the immune system because it is located outside the virion. The conserved region is identified in gp120, and it is recognized by an immune cell which then initiates specific immune responses, viral mutation escape, and increase vaccine protection coverage, a benefit derived from the conserved region-based vaccine design. However, previous researchers have little knowledge on this conserved region as a target for vaccine design. This paper explains how the conserved region of gp120 HIV-1 is a major target for vaccine design through a bioinformatics approach. The conserved region from gp120 was explored as a vaccine design target with a bioinformatics tool that consists of B-cell epitope mapping, vaccine properties, molecular docking, and dynamic simulation. The peptide vaccine candidate of B5 with the gp120 HIV-1 conserved region was found to provoke B-cell activation through a direct pathway, produce specific antibody, and increase protection from multi-strain viral infection.


2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Umar Farooq ◽  
Nazam Khan ◽  
MonaN Bin-Mwena ◽  
MashaelW Alruways ◽  
Noor MotairM Allehyani ◽  
...  

2020 ◽  
Author(s):  
Yuwei Li ◽  
Mi Mao ◽  
Liteng Yang ◽  
Xizhuo Sun ◽  
Nanshan Zhong ◽  
...  

Abstract The newly identified 2019 novel coronavirus (2019-nCoV) has caused more than 81,400 laboratory-confirmed human infections, including 3261 deaths, posing a serious threat to human health. Currently, however, there is no specific antiviral treatment or vaccine. To identify immunodominant peptides for designing global peptide vaccine for combating the infections caused by 2019-nCoV, the structure and immunogenicity of 2019-nCoV structural protein were analyzed by bioinformatics tools. 33 B-cell epitopes and 39 T-cell epitopes were determined in four structural proteins via different immunoinformatic tools in which include spike protein (22 B-cell epitopes, 25 T-cell epitopes ), nucleocapsid protein (7 B-cell epitopes, 6 T-cell epitopes), membrane protein (2 B-cell epitopes, 7 T-cell epitopes), and envelope protein (2 B-cell epitopes, 1T-cell epitopes), respectively. The proportion of epitope residues in primary sequence was used to determine the antigenicity and immunogenicity of proteins. The envelope protein has the largest antigenicity in which residue coverage of B-cell epitopes is 24%. The membrane protein possesses the largest immunogenicity in which residue coverage of T-cell epitopes is 55.86%. The reason that immune storm was caused by 2019-nCoV maybe that the membrane and envelope protein expressed plentifully in cell infected. Further, studies involving experimental validation of these predicted epitopes is warranted to ensure the potential of B-cells and T-cells stimulation for their effective use as vaccine candidates. These findings provide the basis for starting further studies on the pathogenesis, and optimizing the design of diagnostic, antiviral and vaccination strategies for this emerging infection.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248061
Author(s):  
Onyeka S. Chukwudozie ◽  
Clive M. Gray ◽  
Tawakalt A. Fagbayi ◽  
Rebecca C. Chukwuanukwu ◽  
Victor O. Oyebanji ◽  
...  

Developing an efficacious vaccine for SARS-CoV-2 infection is critical to stemming COVID-19 fatalities and providing the global community with immune protection. We have used a bioinformatic approach to aid in designing an epitope peptide-based vaccine against the spike protein of the virus. Five antigenic B cell epitopes with viable antigenicity and a total of 27 discontinuous B cell epitopes were mapped out structurally in the spike protein for antibody recognition. We identified eight CD8+ T cell 9-mers and 12 CD4+ T cell 14-15-mer as promising candidate epitopes putatively restricted by a large number of MHC I and II alleles, respectively. We used this information to construct an in silico chimeric peptide vaccine whose translational rate was highly expressed when cloned in pET28a (+) vector. With our In silico test, the vaccine construct was predicted to elicit high antigenicity and cell-mediated immunity when given as a homologous prime-boost, triggering of toll-like receptor 5 by the adjuvant linker. The vaccine was also characterized by an increase in IgM and IgG and an array of Th1 and Th2 cytokines. Upon in silico challenge with SARS-CoV-2, there was a decrease in antigen levels using our immune simulations. We, therefore, propose that potential vaccine designs consider this approach.


2018 ◽  
Author(s):  
Isra Khalil ◽  
Ibtihal Omer ◽  
Islam Zainalabdin Abdalgadir Farh ◽  
Hanaa Abdalla Mohamed ◽  
Hajr Abdallha Elsharif ◽  
...  

AbstractIntroductionThis study aimed to design an immunogenic epitope for Cryptococcus neoformans the etiological agent of cryptococcosis using in silico simulations, for epitope prediction, we selected the mannoprotein antigen MP88 which it’s known to induce protective immunity.Material & methodA total of 39 sequences of MP88 protein with length 378 amino acids were retrieved from the National Center for Biotechnology Information database (NCBI) in the FASTA format were used to predict antigenic B-cell and T cell epitopes via different bioinformatics tools at Immune Epitope Database and Analysis Resource (IEDB). The tertiary structure prediction of MP88 was created in RaptorX, and visualized by UCSF Chimera software.ResultA Conserved B-cell epitopesAYSTPA, AYSTPAS, PASSNCK, and DSAYPPhave displayed the most promising B cell epitopes. While theYMAADQFCL, VSYEEWMNYandFQQRYTGTFthey represent the best candidates T-cell conserved epitopes, the 9-mer epitopeYMAADQFCLdisplay the greater interact with 9 MHC-I alleles and HLA-A*02:01 alleles have the best interaction with an epitope. TheVSYEEWMNYandFQQRYTGTFthey are non-allergen whileYMAADQFCLwas an allergen. For MHC class II peptide binding prediction, theYARLLSLNA, ISYGTAMAVandINQTSYARLrepresent the most Three highly binding affinity core epitopes. The core epitopeINQTSYARLwas found to interact with 14 MHC-II. The allergenicity prediction revealsISYGTAMAV, INQTSYARLwere non-allergen andYARLLSLNAwas an allergen. Regarding population coverage theYMAADQFCLexhibit, a higher percentage among the world (69.75%) and the average population coverage was93.01%.In MHC-II,ISYGTAMAVepitope reveal a higher percentage (74.39%) and the average population coverage was (81.94%). This successfully designed a peptide vaccine against Cryptococcus neoformans open up a new horizon in Cryptococcus neoformans research; the results require validation by in vitro and in vivo experiments.


2013 ◽  
Vol 10 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Mariusz Skwarczynski ◽  
Khairul A. Kamaruzaman ◽  
Saranya Srinivasan ◽  
Mehfuz Zaman ◽  
I-Chun Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document