scholarly journals Analytical Descriptions of High-Tc Cuprates by Introducing Rotating Holes and a New Model to Handle Many-Body Interactions

Author(s):  
Shinichi Ishiguri

This paper describes all the properties of high-Tc cuprates by introducing rotating holes which are created by angular momentum conservations on a two dimensional CuO2 surface, and which have a different mass from that of a normal hole due to the magnetic field energy induced by the rotation. This new particle called a macroscopic boson describes doping dependences of pseudo gap temperature and the transition temperature at which an anomaly metal phase appears. In addition, it also describes all the properties of the anomaly metal phase, using findings from our previous article [1] . Furthermore, the present paper introduces a new model to handle many-body interactions, which results in a new statistic equation. A partition function of macroscopic bosons describes all the properties of the anomaly metal phase, which sufficiently agrees with experiments. Moreover, the above-mentioned statistic equation describing many-body interactions accurately explains why high-Tc cuprates have significantly high critical temperatures, which indicates that the source of the characteristic stems from pseudo gap energy. By introducing a macroscopic boson and the new statistic model for many-body interactions, the present paper uncovered the mystery of high-Tc cuprates, which have been a challenge for many researchers. Moreover, in the present paper, pure analytical calculations are conducted. These calculations agree with experimental data which do not employ numerical calculations or fitting methods but employ many actual physical constants.

Author(s):  
Shinichi Ishiguri

This study describes all the properties of high Tc cuprates by introducing rotating holes that are created by angular momentum conservations on a 2D CuO2 surface, and which have a different mass from that of a normal hole because of the magnetic field energy induced by the rotation. This new particle called a macroscopic Boson describes the doping dependences of pseudo-gap temperature and the transition temperature at which an anomaly metal phase appears and describes the origin of the pseudo-gap. Furthermore, this study introduces a new model to handle many-body interactions, which results in a new statistic equation. This statistic equation describing many-body interactions accurately explains why high Tc cuprates have significantly high critical temperatures. Moreover a partition function of macroscopic Bosons describes all the properties of anomaly metal phase, which sufficiently agree with experiments, using the result from our previous study [1] that analytically describes the doping dependence of Tc. By introducing a macroscopic Boson and the new statistical model for many-body interactions, this study uncovered the mystery of high Tc cuprates, which have been a challenge for many researchers. An important point is that, in this study, pure analytical calculations are consistently conducted, which agree with experimental data well (i.e., they do not use numerical calculations or fitting methods but use many actual physical constants).


2008 ◽  
Vol 69 (12) ◽  
pp. 2949-2955
Author(s):  
T. Sato ◽  
K. Terashima ◽  
K. Nakayama ◽  
T. Arakane ◽  
H. Matsui ◽  
...  

1994 ◽  
Vol 47 (1) ◽  
pp. 103 ◽  
Author(s):  
S Mohan ◽  
R Kannan

The lattice dynamics of the high Tc superconductor ErBa2Cu307 have been investigated in detail with a modified three-body force shell model. The model accounts for the effect of many-body interactions in the lattice potential. The aim of the present work is to treat the various interactions between the ions in generalised way without making them numerically equal. The values of the phonon frequencies calculated at the zone centre by this new approach are in good agreement with the available Raman and infrared data.


2020 ◽  
Author(s):  
Marc Riera ◽  
Alan Hirales ◽  
Raja Ghosh ◽  
Francesco Paesani

<div> <div> <div> <p>Many-body potential energy functions (PEFs) based on the TTM-nrg and MB-nrg theoretical/computational frameworks are developed from coupled cluster reference data for neat methane and mixed methane/water systems. It is shown that that the MB-nrg PEFs achieve subchemical accuracy in the representation of individual many-body effects in small clusters and enables predictive simulations from the gas to the liquid phase. Analysis of structural properties calculated from molecular dynamics simulations of liquid methane and methane/water mixtures using both TTM-nrg and MB-nrg PEFs indicates that, while accounting for polarization effects is important for a correct description of many-body interactions in the liquid phase, an accurate representation of short-range interactions, as provided by the MB-nrg PEFs, is necessary for a quantitative description of the local solvation structure in liquid mixtures. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document