scholarly journals Analytical Descriptions of High Tc Cuprates by Introducing Rotating Holes and a New Model to Handle Many-Body Interactions

Author(s):  
Shinichi Ishiguri

This study describes all the properties of high Tc cuprates by introducing rotating holes that are created by angular momentum conservations on a 2D CuO2 surface, and which have a different mass from that of a normal hole because of the magnetic field energy induced by the rotation. This new particle called a macroscopic Boson describes the doping dependences of pseudo-gap temperature and the transition temperature at which an anomaly metal phase appears and describes the origin of the pseudo-gap. Furthermore, this study introduces a new model to handle many-body interactions, which results in a new statistic equation. This statistic equation describing many-body interactions accurately explains why high Tc cuprates have significantly high critical temperatures. Moreover a partition function of macroscopic Bosons describes all the properties of anomaly metal phase, which sufficiently agree with experiments, using the result from our previous study [1] that analytically describes the doping dependence of Tc. By introducing a macroscopic Boson and the new statistical model for many-body interactions, this study uncovered the mystery of high Tc cuprates, which have been a challenge for many researchers. An important point is that, in this study, pure analytical calculations are consistently conducted, which agree with experimental data well (i.e., they do not use numerical calculations or fitting methods but use many actual physical constants).

Author(s):  
Shinichi Ishiguri

This paper describes all the properties of high-Tc cuprates by introducing rotating holes which are created by angular momentum conservations on a two dimensional CuO2 surface, and which have a different mass from that of a normal hole due to the magnetic field energy induced by the rotation. This new particle called a macroscopic boson describes doping dependences of pseudo gap temperature and the transition temperature at which an anomaly metal phase appears. In addition, it also describes all the properties of the anomaly metal phase, using findings from our previous article [1] . Furthermore, the present paper introduces a new model to handle many-body interactions, which results in a new statistic equation. A partition function of macroscopic bosons describes all the properties of the anomaly metal phase, which sufficiently agrees with experiments. Moreover, the above-mentioned statistic equation describing many-body interactions accurately explains why high-Tc cuprates have significantly high critical temperatures, which indicates that the source of the characteristic stems from pseudo gap energy. By introducing a macroscopic boson and the new statistic model for many-body interactions, the present paper uncovered the mystery of high-Tc cuprates, which have been a challenge for many researchers. Moreover, in the present paper, pure analytical calculations are conducted. These calculations agree with experimental data which do not employ numerical calculations or fitting methods but employ many actual physical constants.


2008 ◽  
Vol 69 (12) ◽  
pp. 2949-2955
Author(s):  
T. Sato ◽  
K. Terashima ◽  
K. Nakayama ◽  
T. Arakane ◽  
H. Matsui ◽  
...  

2013 ◽  
Vol 28 (36) ◽  
pp. 1350138 ◽  
Author(s):  
ZHI FU GAO ◽  
NA WANG ◽  
QIU HE PENG ◽  
XIANG DONG LI ◽  
YUAN JIE DU

Based on our previous work, we deduce a general formula for pressure of degenerate and relativistic electrons, Pe, which is suitable for superhigh magnetic fields, discuss the quantization of Landau levels of electrons, and consider the quantum electrodynamic (QED) effects on the equations of states (EOSs) for different matter systems. The main conclusions are as follows: Pe is related to the magnetic field B, matter density ρ, and electron fraction Ye; the stronger the magnetic field, the higher the electron pressure becomes; the high electron pressure could be caused by high Fermi energy of electrons in a superhigh magnetic field; compared with a common radio pulsar, a magnetar could be a more compact oblate spheroid-like deformed neutron star (NS) due to the anisotropic total pressure; and an increase in the maximum mass of a magnetar is expected because of the positive contribution of the magnetic field energy to the EOS of the star.


1994 ◽  
Vol 47 (1) ◽  
pp. 103 ◽  
Author(s):  
S Mohan ◽  
R Kannan

The lattice dynamics of the high Tc superconductor ErBa2Cu307 have been investigated in detail with a modified three-body force shell model. The model accounts for the effect of many-body interactions in the lattice potential. The aim of the present work is to treat the various interactions between the ions in generalised way without making them numerically equal. The values of the phonon frequencies calculated at the zone centre by this new approach are in good agreement with the available Raman and infrared data.


Author(s):  
Shinichi Ishiguri

We previously reported new superconductivity produced by an electrostatic field and a diffusion current in a semiconductor without refrigeration. In particular, the superconductivity was investigated theoretically and confirmed experimentally. Here, we determine that the derived superconducting quantum state can be reproduced in a capacitor. When circuits are formed with this new-type capacitor and diodes, a magnetic field is applied to the diodes’ depletion layer. The depletion layer is biased because of the conversion from the magnetic-field energy to electric-field energy, resulting in the diodes’ spontaneously emitting a current. Thus, the new-type capacitor is charged using no other energy source. This new phenomenon is described theoretically with assistance of initial experiments.


Sign in / Sign up

Export Citation Format

Share Document