scholarly journals A Comprehensive Comparative Phylogenomics and Demographic Evolutionary History of the SARS-CoV-2

Author(s):  
Özgül Doğan ◽  
Ertan Mahir Korkmaz ◽  
Mahir Budak ◽  
Battal Çıplak ◽  
Hasan Hüseyin Başıbüyük

A new form of beta coronavirus called severe acute respiratory disease coronavirus type 2 (SARS-CoV-2) causing a recent pandemic outbreak possesses a linear positive ss-RNA genome with a length of 29,903 nt. Here, the genomes of SARS-CoV-2 from 821 samples were characterised for its better understanding of the genomic and evolutionary patterns. The phylogeny of SARS-CoV-2 was reconstructed using concatenated dataset consisting of all peptide encoding sequences under Bayesian Inference (BI) and Maximum Likelihood (ML) approaches. Comparison of all peptide encoding sequences reveals high divergence of amino acid sequences proportional to divergence of nucleotides, indicating that the viral genomic evolution has not been strictly neutral. The most part of the genome was under neutral evolution, however, the specific sites for peptide encoding sequences were evolved under positive selection. As well as providing reliable evidence on transmission routes of the SARS-CoV-2 outbreak, the phylogenetics and network analyses suggest the sample reported from Guangdong province is likely ancestor of the pandemic virus form. The overall substitution rate of SARS-CoV-2 genome was estimated to be 1.65 x 10-3 per site per year, falling within the range for previously reported RNA viruses. Median estimation of tMRCA from Bayesian coalescent analyses corresponds to 10 September 2019. The exponential growth rate (r), doubling time (Td) and R0 were estimated to be 47.43 per year, 5.39 days and 2.72, respectively. These findings convincingly emphasise that the use of more comprehensive genome data improves robustness and also enhances understanding of the demographic history of the outbreak.

1993 ◽  
Vol 67 (4) ◽  
pp. 549-570 ◽  
Author(s):  
Bruce S. Lieberman

Phylogenetic parsimony analysis was used to classify the Siegenian–Eifelian “Metacryphaeus group” of the family Calmoniidae. Thirty-eight exoskeletal characters for 16 taxa produced a shortest-length cladogram with a consistency index of 0.49. A classification based on retrieving the structure of this cladogram recognizes nine genera: Typhloniscus Salter, Plesioconvexa n. gen., Punillaspis Baldis and Longobucco, Eldredgeia n. gen., Clarkeaspis n. gen., Malvinocooperella n. gen., Wolfartaspis Cooper, Plesiomalvinella Lieberman, Edgecombe, and Eldredge (used to represent the malvinellid clade), and Metacryphaeus Reed. The malvinellid clade is most closely related to a revised monophyletic Metacryphaeus. Typhloniscus is the basal member of the “Metacryphaeus group,” and the monotypic Wolfartaspis is sister to the clade containing the malvinellids and Metacryphaeus. Six new species are diagnosed: Punillaspis n. sp. A, “Clarkeaspis” gouldi, Clarkeaspis padillaensis, Malvinocooperella pregiganteus, Metacryphaeus curvigena, and Metacryphaeus branisai. Primitively, this group has South African and Andean affinities, and its evolutionary history suggests rapid diversification. In addition, evolutionary patterns in this group, and the distribution of character reversals, call into question certain notions about the nature of adaptive radiations. The distributions of taxa may answer questions about the number of marine transgressive/regressive cycles in the Emsian–Eifelian of the Malvinokaffric Realm.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241038
Author(s):  
Pita Sudrajad ◽  
Subiharta Subiharta ◽  
Yudi Adinata ◽  
Af’idatul Lathifah ◽  
Jun Heon Lee ◽  
...  

The domestication of Indonesian cattle was investigated through a study of their genetic diversity, up to the genome level. Little documentation exists regarding the history of domestication of Indonesian cattle and questions remain despite a growing body of molecular evidence. In this study, we genotyped seven Indonesian cattle breeds using an Illumina BovineSNP50 Bead Chip to provide insight into their domestication and demographic history in a worldwide population context. Our analyses indicated the presence of hybrid cattle, with Bos javanicus and Bos indicus ancestries being most prevalent, as well as purebred cattle. We revealed that all the breeds were interconnected through several migration events. However, their demographic status varied widely. Although almost all the Indonesian cattle had an effective population size higher than the minimum level required to ensure breed fitness, efforts are still needed to maintain their genetic variability and purity.


2021 ◽  
Vol 21 (01) ◽  
Author(s):  
Nisar A. Shar

ABSTRACT The demographic history of Homo sapiens is complex; it involves a wide range of migrations and genetic adaptations. One of the closely related species to Homo sapiens is Neanderthals, which became extinct about 30,000 years ago. The aim of this research is to compare Homo sapiens with Neanderthals and chimpanzees to understand the patterns of inheritance and survival instincts of Homo sapiens. Results show that out of all selected groups of genes in this study, metabolism, and language genes are found to be the most evolving group of genes. This shows that these most evolving genes are contributing to the advancement of Homo sapiens. However, after comparing human intelligence genes with the primates, it is found that exonic regions are contributing more to the evolution of human intelligence hence, making Homo sapiens unique in terms of intelligence.


2020 ◽  
Author(s):  
Sumanth Kumar Mutte ◽  
Dolf Weijers

ABSTRACTProtein oligomerization is a fundamental process to build complex functional modules. Domains that facilitate the oligomerization process are diverse and widespread in nature across all kingdoms of life. One such domain is the Phox and Bem1 (PB1) domain, which is functionally (relatively) well understood in the animal kingdom. However, beyond animals, neither the origin nor the evolutionary patterns of PB1-containing proteins are understood. While PB1 domain proteins have been found in other kingdoms, including plants, it is unclear how these relate to animal PB1 proteins.To address this question, we utilized large transcriptome datasets along with the proteomes of a broad range of species. We discovered eight PB1 domain-containing protein families in plants, along with three each in Protozoa and Chromista and four families in Fungi. Studying the deep evolutionary history of PB1 domains throughout eukaryotes revealed the presence of at least two, but likely three, ancestral PB1 copies in the Last Eukaryotic Common Ancestor (LECA). These three ancestral copies gave rise to multiple orthologues later in evolution. Tertiary structural models of these plant PB1 families, combined with Random Forest based classification, indicated family-specific differences attributed to the length of PB1 domain and the proportion of β-sheets.This study identifies novel PB1 families and reveals considerable complexity in the protein oligomerization potential at the origin of eukaryotes. The newly identified relationships provide an evolutionary basis to understand the diverse functional interactions of key regulatory proteins carrying PB1 domains across eukaryotic life.


2019 ◽  
Vol 125 (1) ◽  
pp. 105-117 ◽  
Author(s):  
Yixuan Kou ◽  
Li Zhang ◽  
Dengmei Fan ◽  
Shanmei Cheng ◽  
Dezhu Li ◽  
...  

Abstract Background and Aims Many monotypic gymnosperm lineages in south-east China paradoxically remain in relict status despite long evolutionary histories and ample opportunities for allopatric speciation, but this paradox has received little attention and has yet to be resolved. Here, we address this issue by investigating the evolutionary history of a relict conifer, Pseudotaxus chienii (Taxaceae). Methods DNA sequences from two chloroplast regions and 14 nuclear loci were obtained for 134 samples. The demographic history was inferred and the contribution of isolation by environment (IBE) in patterning genetic divergence was compared with that of isolation by distance (IBD). Key Results Three genetic clusters were identified. Approximate Bayesian computation analyses showed that the three clusters diverged in the late Pliocene (~3.68 Ma) and two admixture events were detected. Asymmetric gene flow and similar population divergence times (~ 3.74 Ma) were characterized using the isolation with migration model. Neither IBD nor IBE contributed significantly to genetic divergence, and the contribution of IBE was much smaller than that of IBD. Conclusions These results suggest that several monotypic relict gymnosperm lineages like P. chienii in south-east China did not remain in situ and undiversified for millions of years. On the contrary, they have been evolving and the extant populations have become established more recently, having insufficient time to speciate. Our findings provide a new perspective for understanding the formation and evolution of the relict gymnosperm flora of China as well as of the Sino-Japanese Flora.


2007 ◽  
Vol 35 (3) ◽  
pp. 599-603 ◽  
Author(s):  
C. Southan

Multiple alignments and phylogenetic tree constructions are established techniques for examining the evolutionary history of protease sequences in organisms such as humans, mice, fruitflies, nematode worms and yeast. They also facilitate the mapping of those conserved positions that are important for structure and catalytic function. However, the continued increase in completed or draft genomes offers new opportunities for examining protease evolution across a broader (e.g. more mammals) and deeper (e.g. more invertebrates) phylogenetic range. In addition, the improving annotation not only of proteases, but also of their substrates, interaction partners in proteolytic complexes and endogenous inhibitor proteins now means that aspects of co-evolution can be addressed. The increasing phylogenetic coverage is also important for resolving orthology issues that arise from protease gene duplication or loss in different lineages. Selected sequences will be used to exemplify the utility of Internet resources and present results for these types of analysis.


GigaScience ◽  
2021 ◽  
Vol 10 (5) ◽  
Author(s):  
Mengni Liu ◽  
Jianyu Chen ◽  
Xin Wang ◽  
Chengwei Wang ◽  
Xiaolong Zhang ◽  
...  

Abstract Background Multi-region sequencing (MRS) has been widely used to analyze intra-tumor heterogeneity (ITH) and cancer evolution. However, comprehensive analysis of mutational data from MRS is still challenging, necessitating complicated integration of a plethora of computational and statistical approaches. Findings Here, we present MesKit, an R/Bioconductor package that can assist in characterizing genetic ITH and tracing the evolutionary history of tumors based on somatic alterations detected by MRS. MesKit provides a wide range of analysis and visualization modules, including ITH evaluation, metastatic route inference, and mutational signature identification. In addition, MesKit implements an auto-layout algorithm to generate phylogenetic trees based on somatic mutations. The application of MesKit for 2 reported MRS datasets of hepatocellular carcinoma and colorectal cancer identified known heterogeneous features and evolutionary patterns, together with potential driver events during cancer evolution. Conclusions In summary, MesKit is useful for interpreting ITH and tracing evolutionary trajectory based on MRS data. MesKit is implemented in R and available at https://bioconductor.org/packages/MesKit under the GPL v3 license.


2019 ◽  
Author(s):  
Daniel Živković ◽  
Sona John ◽  
Mélissa Verin ◽  
Wolfgang Stephan ◽  
Aurélien Tellier

AbstractCoevolution is a selective process of reciprocal adaptation between antagonistic or mutualistic symbionts and their host. Classic population genetics theory predicts the signatures of selection at the interacting loci but not the neutral genome-wide polymorphism patterns. We here build a coevolutionary model with cyclic changes in the host and parasite population sizes. Using an analytical framework, we investigate if and when these population size changes can be observed in the neutral site frequency spectrum of the host and parasite full genome data. We show that polymorphism data sampled over time can capture the changes in the population size of the parasite but not of the host because genetic drift and mutations occur on different time scales in the coevolving species. This is due to the small parasite population size at the onset of the coevolutionary history subsequently undergoing a series of strong bottlenecks. We also show that tracking coevolutionary cycles is more likely for a small amount of parasite per host and for multiple parasite generations per host generation. Our results demonstrate that time sampling of host and parasite full genome data are crucial to infer the co-demographic history of interacting species.


2021 ◽  
Vol 15 (02) ◽  
pp. 280-288
Author(s):  
Silvia Angeletti ◽  
Domenico Benvenuto ◽  
Marta Fogolari ◽  
Cecilia De Flora ◽  
Giancarlo Ceccarelli ◽  
...  

Introduction: Salivirus (SalV) represents an emerging problem in public health especially during the recent years. In this study, the Bayesian evolutionary history and the spread of the virus through the different countries have been reported. Methodology: a database of 81 sequences of SalV structural VP1 fragment were downloaded from GenBank, aligned and manually edited by Bioedit Software. ModelTest v. 3.7 software was used to estimate the simplest evolutionary model fitting the sequence dataset. A Maximum-Likelihood tree has been generated using MEGA-X to test the “clockliness” signal using TempEst 1.5.1. The Bayesian phylogenetic tree was built by BEAST. Homology modelling was performed by SWISS-Model and protein variability evaluated by ConSurf server. Results: the phylogenetic tree showed a clade of SalV A2 and three main clades of SalV A1, revealing several infections in humans in South Korea, India, Tunisia, China, Nigeria, Ethiopia and USA. The Bayesian maximum clade credibility tree and the time of the most common recent ancestor dated back the root of the tree to the year 1788 with the probable origin in USA. Selective pressure analysis revealed two positive selection sites, His at 100th and Leu at 116th positions that at the homology modelling resulted important to guarantee protein stability and variability. This could contribute to the development of new mutations modifying the clinical features of this evolving virus. Conclusions: Bayesian phylogenetic and phylodynamic represented a useful tool to follow the transmission dynamic of SalV and to prevent new epidemics worldwide.


Sign in / Sign up

Export Citation Format

Share Document