scholarly journals Tunneling in Fermi Systems with Quadratic Band Crossing Points

Author(s):  
Ipsita Mandal

We investigate the tunneling of quasiparticles through a potential barrier of finite height and width, in a system with a band structure consisting of a quadratic band crossing point (QBCP). We compute the results of the transmission coefficient at various incident angles, and also the conductivity and the Fano factor. We discuss the distinguishing signatures of these transport properties in comparison with other semimetals, as well as electrons in normal metals.

Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 143
Author(s):  
Sergey Nikolaev ◽  
Dmitry Pshenay-Severin ◽  
Yuri Ivanov ◽  
Alexander Burkov

Recently, it was shown that materials with certain crystal structures can exhibit multifold band crossings with large topological charges. CoSi is one such material that belongs to non-centrosymmetric space group P213 (#198) and posseses multifold band crossing points with a topological charge of 4. The change of crystal symmetry, e.g., by means of external stress, can lift the degeneracy and change its topological properties. In the present work, the influence of uniaxial deformation on the band structure and topological properties of CoSi is investigated on the base of ab initio calculations. The k·p Hamiltonian taking into account deformation is constructed on the base of symmetry consideration near the Γ and R points both with and without spin-orbit coupling. The transformation of multifold band crossings into nodes of other types with different topological charges, their shift both in energy and in reciprocal space and the tilt of dispersion around nodes are studied in detail depending on the direction of uniaxial deformation.


Author(s):  
Gautam Sharma ◽  
Vineet Kumar Pandey ◽  
Shouvik Datta ◽  
Prasenjit Ghosh

Thermoelectric materials are used for conversion of waste heat to electrical energy. The transport coefficients that determine their thermoelectric properties depend on the band structure and the relaxation time of...


2019 ◽  
Vol 58 (9) ◽  
pp. 5533-5542 ◽  
Author(s):  
Patrick Gougeon ◽  
Philippe Gall ◽  
Rabih Al Rahal Al Orabi ◽  
Benoit Boucher ◽  
Bruno Fontaine ◽  
...  

1993 ◽  
Vol 71 (25) ◽  
pp. 4166-4169 ◽  
Author(s):  
Takeo Fujiwara ◽  
Susumu Yamamoto ◽  
Guy Trambly de Laissardière

1970 ◽  
Vol 1 (10) ◽  
pp. 3998-4004 ◽  
Author(s):  
L. W. James ◽  
J. P. Van Dyke ◽  
F. Herman ◽  
D. M. Chang

2019 ◽  
Vol 7 (3) ◽  
pp. 1045-1054 ◽  
Author(s):  
Hasbuna Kamila ◽  
Prashant Sahu ◽  
Aryan Sankhla ◽  
Mohammad Yasseri ◽  
Hoang-Ngan Pham ◽  
...  

Figure of merit zT mapping of p-Mg2Si1−xSnx with respect to carrier concentration.


Nanoscale ◽  
2019 ◽  
Vol 11 (38) ◽  
pp. 17894-17903 ◽  
Author(s):  
G. H. Silvestre ◽  
Wanderlã L. Scopel ◽  
R. H. Miwa

(Left) Localization of the electronic states near the Fermi level, and the electronic band structure projected on the S1 and S2 stripes. (Right) Transmission probabilites parallel (y) and perpendicular (x) to the S1/S2 borophene superlattice.


2011 ◽  
Vol 25 (10) ◽  
pp. 739-745 ◽  
Author(s):  
N. A. AMIN ◽  
M. T. AHMADI ◽  
Z. JOHARI ◽  
S. M. MOUSAVI ◽  
R. ISMAIL

In this letter, we investigate the transport properties of one-dimensional semiconducting Graphene nanoribbons (GNRs) with parabolic band structure near the Dirac point. The analytical model of effective mobility is developed by using the conductance approach, which differs from the conventional method of extracting the effective mobility using the well-known Matthiessen rule. Graphene nanoribbons conductance model developed was applied in the Drude model to obtain the effective mobility, which then gives nearly close comparison with the experimental data.


Sign in / Sign up

Export Citation Format

Share Document