scholarly journals Current Status of- and Future Perspectives in- Bacterial Degradation of Benzo[a]pyrene

Author(s):  
Alexis Nzila ◽  
Musa M. Musa

Polycyclic aromatic hydrocarbons (PAHs), which consist of low-molecular-weight PAHs (LMW-PAHs) and high-molecular-weight PAHs (HMW-PAHs), form an important class of pollutants. Pyrene and benzo[a]pyrene (BaP) are the main pollutants belonging to HMW-PAHs, and their degradation by microorganisms remains an important strategy for their removal from the environments. Extensive studies have been carried out on the isolation and characterisation of microorganisms that actively degrade LMW-PAHs, and to a certain extent, the HMW-PAH pyrene. However, so far, limited work has been carried out on BaP biodegradation. BaP consists of five fused aromatic rings, which confers this compound a high stability, rendering it less amenable to biodegradation. The current review summarizes the emerging reports on BaP biodegradation. More specifically, work carried out on BaP bacterial degradation and current knowledge gaps that limit our understanding of BaP degradation are highlighted. Moreover, new avenues of research on BaP degradation are proposed, specifically in the context of the development of “omics” approaches

Author(s):  
Alexis Nzila ◽  
Musa M. Musa

Benzo[a]pyrene (BaP) is one the main pollutants belonging to the high-molecular-weight PAHs (HMW-PAHs) class and its degradation by microorganisms remains an important strategy for its removal from the environment. Extensive studies have been carried out on the isolation and characterisation of microorganisms that can actively degrade low-molecular-weight PAHs (LMW-PAHs), and to a certain extent, the HMW-PAH pyrene. However, so far, limited work has been carried out on BaP biodegradation. BaP consists of five fused aromatic rings, which confers this compound a high chemical stability, rendering it less amenable to biodegradation. The current review summarizes the emerging reports on BaP biodegradation. More specifically, work carried out on BaP bacterial degradation and current knowledge gaps that limit our understanding of BaP degradation are highlighted. Moreover, new avenues of research on BaP degradation are proposed, specifically in the context of the development of “omics” approaches.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256853
Author(s):  
Sher-Rine Kong ◽  
Masanobu Yamamoto ◽  
Hasrizal Shaari ◽  
Ryoma Hayashi ◽  
Osamu Seki ◽  
...  

The reconstruction of fire history is essential to understand the palaeoclimate and human history. Polycyclic aromatic hydrocarbons (PAHs) have been extensively used as a fire marker. In this work, the distribution of PAHs in Borneo peat archives was investigated to understand how PAHs reflect the palaeo-fire activity. In total, 52 peat samples were analysed from a Borneo peat core for the PAH analysis. Pyrogenic PAHs consist of 2–7 aromatic rings, some of which have methyl and ethyl groups. The results reveal that the concentration of pyrogenic PAHs fluctuated with the core depth. Compared to low-molecular-weight (LMW) PAHs, the high-molecular-weight (HMW) PAHs had a more similar depth variation to the charcoal abundance. This finding also suggests that the HMW PAHs were mainly formed at a local fire near the study area, while the LMW PAHs could be transported from remote locations.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 446
Author(s):  
Lei Zhang ◽  
Jie Qiao ◽  
Haiyang Cui ◽  
Minghui Wang ◽  
Xiujuan Li

Polycyclic aromatic hydrocarbons (PAHs), an organic pollutant with persistence and carcinogenicity, are universally present in the environment and food processing. Biological approaches toward remediating PAHs-contaminated sites are a viable, economical, and environmentally friendly alternative compared to conventional physical and/or chemical remediation methods. Recently, various strategies relating to low molecular weight organic acids (LMWOAs) have been developed to enhance the microbial degradation of PAHs. However, the remaining challenge is to reveal the role of LMWOAs in the PAHs biodegradation process, and the latter limits researchers from expanding the application scope of biodegradation. In this mini-review, we summarized the current understanding of the impact of LMWOAs on (1) the physicochemical behavior of PAHs in the extracellular environment; (2) the interactions between PAHs and the microbial cell surface; and (3) the intracellular metabolization of PAHs. Future perspectives for this field are discussed in this review as well.


2017 ◽  
Vol 54 (4) ◽  
pp. 655-658
Author(s):  
Andrei Bejan ◽  
Dragos Peptanariu ◽  
Bogdan Chiricuta ◽  
Elena Bicu ◽  
Dalila Belei

Microfibers were obtained from organic low molecular weight compounds based on heteroaromatic and aromatic rings connected by aliphatic spacers. The obtaining of microfibers was proved by scanning electron microscopy. The deciphering of the mechanism of microfiber formation has been elucidated by X-ray diffraction, infrared spectroscopy, and atomic force microscopy measurements. By exciting with light of different wavelength, florescence microscopy revealed a specific optical response, recommending these materials for light sensing applications.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4620 ◽  
Author(s):  
Camilo Zamora-Ledezma ◽  
David F. Clavijo C. ◽  
Ernesto Medina ◽  
Federico Sinche ◽  
Nelson Santiago Vispo ◽  
...  

The coronavirus infectious disease (COVID-19) pandemic emerged at the end of 2019, and was caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which has resulted in an unprecedented health and economic crisis worldwide. One key aspect, compared to other recent pandemics, is the level of urgency, which has started a race for finding adequate answers. Solutions for efficient prevention approaches, rapid, reliable, and high throughput diagnostics, monitoring, and safe therapies are needed. Research across the world has been directed to fight against COVID-19. Biomedical science has been presented as a possible area for combating the SARS-CoV-2 virus due to the unique challenges raised by the pandemic, as reported by epidemiologists, immunologists, and medical doctors, including COVID-19’s survival, symptoms, protein surface composition, and infection mechanisms. While the current knowledge about the SARS-CoV-2 virus is still limited, various (old and new) biomedical approaches have been developed and tested. Here, we review the current status and future perspectives of biomedical science in the context of COVID-19, including nanotechnology, prevention through vaccine engineering, diagnostic, monitoring, and therapy. This review is aimed at discussing the current impact of biomedical science in healthcare for the management of COVID-19, as well as some challenges to be addressed.


Sign in / Sign up

Export Citation Format

Share Document