scholarly journals Investigations on Dynamical Stability in 3D Quadrupole Ion Traps

Author(s):  
Bogdan Mihalcea ◽  
Stephen Lynch

We firstly discuss classical stability for a dynamical system of two ions levitated in a 3D Radio-Frequency (RF) trap, assimilated with two coupled oscillators. The system dynamics is characterized using a well established model that relies on two control parameters: the axial angular moment and the ratio between the radial and axial trap pseudo-oscillator characteristic frequencies. We augment this model and employ the Hessian matrix of the potential function in an attempt to better describe dynamical stability and the critical points. Our approach is then used to explore quantum stability in case of strongly coupled Coulomb many-body systems and establish a technique aimed at determining the critical points. Finally, we apply the model in case of a 3D Quadrupole Ion Trap (QIT) with axial symmetry, for which we obtain the associated Hamilton function. A different approach is used to better characterize many-body dynamics in combined (Paul and Penning) traps, with applications such as stable trapping of antimatter or fundamental tests of the Standard Model. The ion distribution can be described by means of numerical modeling, based on the Hamilton function we assign to the system. The approach we introduce is effective to infer the parameters of distinct types of traps by applying a cohesive method.

Author(s):  
Bogdan Mihalcea ◽  
Stephen Lynch

We firstly discuss classical stability for a dynamical system of two ions levitated in a 3D Radio-Frequency (RF) trap, assimilated with two coupled oscillators. We obtain the solutions of the coupled system of equations that characterizes the associated dynamics. In addition, we supply the modes of oscillation and demonstrate the weak coupling condition is inappropriate in practice, while for collective modes of motion (and strong coupling) only a peak of the mass can be detected. Phase portraits and power spectra are employed to illustrate how the trajectory executes quasiperiodic motion on the surface of torus, namely a Kolmogorov-Arnold-Moser (KAM) torus. In an attempt to better describe dynamical stability of the system, we introduce a model that characterizes dynamical stability and the critical points based on the Hessian matrix approach. The model is then applied to investigate quantum dynamics for many-body systems consisting of identical ions, levitated in 2D and 3D ion traps. Finally, the same model is applied to the case of a combined 3D Quadrupole Ion Trap (QIT) with axial symmetry, for which we obtain the associated Hamilton function. The ion distribution can be described by means of numerical modeling, based on the Hamilton function we assign to the system. The approach we introduce is effective to infer the parameters of distinct types of traps by applying a unitary and coherent method, and especially for identifying equilibrium configurations, of large interest for ion crystals or quantum logic.


2021 ◽  
Vol 11 (7) ◽  
pp. 2938
Author(s):  
Bogdan M. Mihalcea ◽  
Stephen Lynch

We firstly discuss classical stability for a dynamical system of two ions levitated in a 3D Radio-Frequency (RF) trap, assimilated with two coupled oscillators. We obtain the solutions of the coupled system of equations that characterizes the associated dynamics. In addition, we supply the modes of oscillation and demonstrate the weak coupling condition is inappropriate in practice, while for collective modes of motion (and strong coupling) only a peak of the mass can be detected. Phase portraits and power spectra are employed to illustrate how the trajectory executes quasiperiodic motion on the surface of torus, namely a Kolmogorov–Arnold–Moser (KAM) torus. In an attempt to better describe dynamical stability of the system, we introduce a model that characterizes dynamical stability and the critical points based on the Hessian matrix approach. The model is then applied to investigate quantum dynamics for many-body systems consisting of identical ions, levitated in 2D and 3D ion traps. Finally, the same model is applied to the case of a combined 3D Quadrupole Ion Trap (QIT) with axial symmetry, for which we obtain the associated Hamilton function. The ion distribution can be described by means of numerical modeling, based on the Hamilton function we assign to the system. The approach we introduce is effective to infer the parameters of distinct types of traps by applying a unitary and coherent method, and especially for identifying equilibrium configurations, of large interest for ion crystals or quantum logic.


2005 ◽  
Vol 11 (1) ◽  
pp. 15-21 ◽  
Author(s):  
Kwenga F. Sichilongo ◽  
Bert C. Lynn

Real-time experiments involving fragmentation of the precursor molecular ion of n-butylbenzene ( m/z 134) to produce product ions C7H+7 ( m/z 91) and C7H+8 ( m/z 92), were used to observe the motion of ions in a commercial quadrupole ion trap. Initially, ghost resonance peaks were observed for excitation of the precursor ion at qz values of 0.4 and 0.5 on the qz axis of the stability diagram. Further experiments involving the generation of two-dimensional contour plots confirmed that these ghost peaks, which were in agreement with mathematical equations describing the motion of ions in a quadrupole field, arose due to waveboard artifacts. Two-dimensional contour surface plots showed non-linear secular frequency canyons from a qz value of 0.5 to higher values corresponding with higher drive radio frequency (rf) voltages on the stability diagram. This observation confirmed that ions are subjected to non-linear effects in this mass scan range. The octapole and hexapole field lines were observed at qz values of 0.65 and 0.78, respectively.


2021 ◽  
Vol 217 (1) ◽  
Author(s):  
J. Simcic ◽  
D. Nikolić ◽  
A. Belousov ◽  
D. Atkinson ◽  
C. Lee ◽  
...  

AbstractTo date, a variety of different types of mass spectrometers have been utilized on missions to study the composition of atmospheres of solar system bodies, including Venus, Mars, Jupiter, Titan, the moon, and several comets. With the increasing interest in future small probe missions, mass spectrometers need to become even more versatile, lightweight, compact, and sensitive.For in situ exploration of ice giant atmospheres, the highest priority composition measurements are helium and the other noble gases, noble gas isotopes, including 3He/4He, and other key isotopes like D/H. Other important but lower priority composition measurements include abundances of volatiles C, N, S, and P; isotopes 13C/12C, 15N/14N, 18O/17O/16O; and disequilibrium species PH3, CO, AsH3, GeH4, and SiH4. Required measurement accuracies are largely defined by the accuracies achieved by the Galileo (Jupiter) probe Neutral Mass Spectrometer and Helium Abundance Detectors, and current measurement accuracies of solar abundances.An inherent challenge of planetary entry probe mass spectrometers is the introduction of material to be sampled (gas, solid, or liquid) into the instrument interior, which operates at a vacuum level. Atmospheric entry probe mass spectrometers typically require a specially designed sample inlet system, which ideally provides highly choked, nearly constant mass-flow intake over a large range of ambient pressures. An ice giant descent probe would have to operate for 1-2 hours over a range of atmospheric pressures, possibly covering 2 or more orders of magnitude, from the tropopause near 100 mbar to at least 10 bars, in an atmospheric layer of depth beneath the tropopause of about 120 km at Neptune and about 150 km at Uranus.The Jet Propulsion Laboratory’s Quadrupole Ion Trap Mass Spectrometer (QITMS) is being developed to achieve all of these requirements. A compact, wireless instrument with a mass of only 7.5 kg, and a volume of 7 liters (7U), the JPL QITMS is currently the smallest flight mass spectrometer available for possible use on planetary descent probes as well as small bodies, including comet landers and surface sample return missions. The QITMS is capable of making measurements of all required constituents in the mass range of 1–600 atomic mass units (u) at a typical speed of 50 mass spectra per second, with a sensitivity of up to $10^{13}$ 10 13  counts/mbar/sec and mass resolution of $m/\Delta m=18000$ m / Δ m = 18000 at m/q = 40. (Throughout this paper we use the unit of m/q = u/e for the mass-to-charge ratio, where atomic mass unit and elementary charge are $1~\text{u} = 1.66\times 10^{-27}~\text{kg}$ 1 u = 1.66 × 10 − 27 kg and $1\text{e} = 1.6\times 10^{-19}$ 1 e = 1.6 × 10 − 19 C, respectively.) The QITMS features a novel MEMS-based inlet system driven by a piezoelectric actuator that continuously regulates gas flow at inlet pressures of up to 100 bar.In this paper, we present an overview of the QITMS capabilities, including instrument design and characteristics of the inlet system, as well as the most recent results from laboratory measurements in different modes of operation, especially suitable for ice giant atmospheres exploration.


2021 ◽  
Vol 27 (1) ◽  
pp. 3-12
Author(s):  
Bjoern Raupers ◽  
Hana Medhat ◽  
Juergen Grotemeyer ◽  
Frank Gunzer

Ion traps like the Orbitrap are well known mass analyzers with very high resolving power. This resolving power is achieved with help of ions orbiting around an inner electrode for long time, in general up to a few seconds, since the mass signal is obtained by calculating the Fourier Transform of the induced signal caused by the ion motion. A similar principle is applied in the Cassinian Ion Trap of second order, where the ions move in a periodic pattern in-between two inner electrodes. The Cassinian ion trap has the potential to offer mass resolving power comparable to the Orbitrap with advantages regarding the experimental implementation. In this paper we have investigated the details of the ion motion analyzing experimental data and the results of different numerical methods, with focus on increasing the resolving power by increasing the oscillation frequency for ions in a high field ion trap. In this context the influence of the trap door, a tunnel through which the ions are injected into the trap, on the ion velocity becomes especially important.


2000 ◽  
Vol 194 (2-3) ◽  
pp. 225-234 ◽  
Author(s):  
Carsten Weil ◽  
J.Mitchell Wells ◽  
H Wollnik ◽  
R.Graham Cooks

2003 ◽  
Vol 230 (1) ◽  
pp. 65-70 ◽  
Author(s):  
Won-Wook Lee ◽  
Soon-Ki Min ◽  
Cha-Hwan Oh ◽  
Pill-Soo Kim ◽  
Seok-Ho Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document