scholarly journals Optimization of the ZnO ALD Coating of a Photonic Microsphere-Based Temperature Sensor

Author(s):  
Paulina Listewnik ◽  
Mikhael Bechelany ◽  
Małgorzata Szczerska

This study presents of the microsphere-based fiber-optic sensor with the ZnO ALD coating thickness of 100 nm and 200 nm for temperature measurements. Metrological properties of the sensor were investigated over the temperature range of 100°C to 300°C, with a 10°C step. The interferometric signal is used to control whether the microstructure is intact. Spectrum shift of a reflected signal is used to conclude changes in measured parameter for the sensor with a 100 nm coating, while the reflected signal intensity is an indicator during measurements executed by a sensor with a 200 nm coating. With changing temperature, the peak position or intensity of a reflected signal also changes. The R2 coefficient of the presented sensors indicates a linear fit of over 0.99 to the obtained data. The sensitivity of the sensors, investigated in this study, equals 103.5 nW/°C and 0.019 nm/°C for ZnO thickness of 200 nm and 100 nm, respectively.

2021 ◽  
Vol 2 (1) ◽  
pp. 99
Author(s):  
Paulina Listewnik

This study presents a microsphere-based fiber-optic sensor with a ZnO Atomic Layer Deposition (ALD) coating thickness of 100 nm for temperature measurements. Metrological properties of the sensor were investigated over the temperature range of 100 °C to 300 °C, with a 10 °C step. An interferometric signal is used to control whether the microstructure is whole. Spectrum shift of a reflected signal is used to ascertain changes in the measured parameter. With changing temperature, the peak position of a reflected signal also changes. The R2 coefficient of the presented sensor indicates a good linear fit of over 0.99 to the obtained data. The sensitivity of the sensor investigated in this study equals 0.019 nm/°C.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 4982
Author(s):  
Paulina Listewnik ◽  
Mikhael Bechelany ◽  
Paweł Wierzba ◽  
Małgorzata Szczerska

This study presents the microsphere-based fiber-optic sensor with the ZnO Atomic Layer Deposition coating thickness of 100 nm and 200 nm for temperature measurements. Metrological properties of the sensor were investigated over the temperature range from 100 °C to 300 °C, with a 10 °C step. The interferometric signal was used to monitor the integrity of the microsphere and its attachment to the connecting fiber. For the sensor with a 100 nm coating, a spectrum shift of the reflected signal and the optical power of the reflected signal were used to measure temperature, while only the optical power of the reflected signal was used in the sensor with a 200 nm coating. The R2 coefficient of the discussed sensors indicates a linear fit of over 0.99 to the obtained data. The sensitivity of the sensors, investigated in this study, equals 103.5 nW/°C and 19 pm/°C or 11.4 nW/°C for ZnO thickness of 200 nm and 100 nm, respectively.


2011 ◽  
Vol 14 (4) ◽  
pp. 66-72 ◽  
Author(s):  
S.M. Al-Hilly ◽  
◽  
Z. E. Khaleel ◽  
A.F. Alrubaye ◽  
◽  
...  

Author(s):  
Yadira A. Fuentes-Rubio ◽  
Rene F. Dominguez-Cruz ◽  
Oscar Baldovino-Pantaleon ◽  
Carlos Ruiz-Zamarreno ◽  
Francisco J. Arregui

Sign in / Sign up

Export Citation Format

Share Document