scholarly journals Fabrication of Micron Scale Three-Dimensional Single Crystal Diamond Channel: by Micro-Jet Water-Assist Laser

Author(s):  
Qiang Wei ◽  
Xiaofan Zhang ◽  
Fang Lin ◽  
Ruozheng Wang ◽  
Genqiang Chen ◽  
...  

Two types of trenches cross-section in conventional vertical and brand new reverse-V-shape have fabricated on SCD substrate by micro-jet water-assist laser, the epitaxial lateral overgrowth technique has applied by microwave plasma chemical vapor deposition system in forming multiple micrometer-size channels. Raman and SEM techniques have applied in analyze both types growth layer characterization. Optical microscope has used to test microchannels hollowness. As a result, with the brand new reverse-V-shape trench, epitaxial lateral overgrowth layer reaches higher SCD surface morphology and crystal quality.

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3006
Author(s):  
Qiang Wei ◽  
Xiaofan Zhang ◽  
Fang Lin ◽  
Ruozheng Wang ◽  
Genqiang Chen ◽  
...  

Two types of a trench with conventional vertical and new reverse-V-shaped cross-sections were fabricated on single crystal diamond (SCD) substrate using a micro-jet water-assisted laser. In addition, a microwave plasma chemical vapor deposition device was used to produce multiple micrometer-sized channels using the epitaxial lateral overgrowth technique. Raman and SEM methods were applied to analyze both types of growth layer characterization. The hollowness of the microchannels was measured using an optical microscope. According to the findings, the epitaxial lateral overgrowth layer of the novel reverse-V-shaped trench produced improved SCD surface morphology and crystal quality.


CrystEngComm ◽  
2022 ◽  
Author(s):  
Wei Cao ◽  
Zhibin Ma ◽  
Hongyang Zhao ◽  
Deng Gao ◽  
Qiuming Fu

On a semi-open holder, the homoepitaxial lateral growth of single-crystal diamond (SCD) was carried out via microwave plasma chemical vapor deposition (MPCVD). By tuning and optimizing two different structures of...


2006 ◽  
Vol 15 (2-3) ◽  
pp. 304-308 ◽  
Author(s):  
Pawan K. Tyagi ◽  
Abha Misra ◽  
K.N. Narayanan Unni ◽  
Padmnabh Rai ◽  
Manoj K. Singh ◽  
...  

Crystals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 320 ◽  
Author(s):  
Qijun Wang ◽  
Gai Wu ◽  
Sheng Liu ◽  
Zhiyin Gan ◽  
Bo Yang ◽  
...  

A 2.45 GHz microwave-plasma chemical-vapor deposition (MPCVD) reactor was designed and built in-house by collaborating with Guangdong TrueOne Semiconductor Technology Co., Ltd. A cylindrical cavity was designed as the deposition chamber and a circumferential coaxial-mode transformer located at the top of the cavity was adopted as the antenna. Two quartz-ring windows that were placed far away from the plasma and cooled by water-cooling cavity walls were used to affix the antenna to the cavity and act as a vacuum seal for the reactor, respectively. This design improved the sealing and protected the quartz windows. In addition, a numerical simulation was proposed to predict the electric-field and plasma-density distributions in the cavity. Based on the simulation results, a microwave-plasma reactor with TM021 mode was built. The leak rate of this new reactor was tested to be as low as 1 × 10−8 Pa·m3·s−1, and the maximal microwave power was as high as 10 kW. Then, single-crystal diamond films were grown with the morphology and crystalline quality characterized by an optical microscope, atomic force microscope (AFM), Raman spectrometer, photoluminescence (PL) spectrometer, and high-resolution X-ray diffractometer. It was shown that the newly developed MPCVD reactor can produce diamond films with high quality and purity.


Sign in / Sign up

Export Citation Format

Share Document