scholarly journals Analysis of Dust Flux and Sand Collection Efficiency of Wind Erosion near Surface Based on Field Observations

Author(s):  
Xinchun Liu ◽  
Yongde Kang ◽  
Hongna Chen ◽  
Hui Lu

The sand-dust horizontal flux is an important parameter for the study on aeolian sand transport, as well as an important foundation. In this study, a field experiment was developed to measure the data of aeolian transport and microclimate during different dust events with an auto sand sampler, a piezoelectric saltation sensor (H11-Sensit) and a 10 m high meteorological tower in Ta Zhong, the hinterland of the Taklimakan Desert from July to August in 2010. Then, the sampling efficiency of auto sand sampler and horizontal dust flux of near surface were analyzed based on observed data. The results were as follows: sand collector skip turnover increased with the increase of the intensity of dust weather frequency increases, the power function relationship y=2.115 x0.9841, R2 = 0.9206, flip frequency per minute increased from 0.2794 times to 1.3041 times, change is obvious; With the strength of the weather, time to flip the average sediment is shrinking. Sandstorm weather, skip to flip a volume of 3.7160 g, grade I flying sand weather flip a volume of 4.0275 g, the amount of class II flying sand weather turns over a 5. 0035g.The horizontal dust flux of different dust events that calculated with the equation Q=256M; the maximum of one dust event was about 190.335 kg, and the minimum was 1.2 kg. Overall, the sand transportation rate increased with wind speed. However, the changes of sand transportation rate did not quite fit in with wind speed during some dust events, and in this case the corresponding surface temperature was significantly higher. The experimental data obtained can provide theoretical basis for regional sand control and enacting effective engineering measures.

Author(s):  
Xinchun Liu ◽  
Yongde Kang ◽  
Hongna Chen ◽  
Hui Lu

Sand collectors are important for quantitatively monitoring aeolian sand activities. In this paper, an automatic high-precision sand collector was designed. Based on the measured data of aeolian transport performed with a piezoelectric saltation sensor (H11-Sensit) and a 10 m high meteorological tower, the sampling efficiency of the automatic sand sampler and the horizontal dust flux of the near surface were analyzed based on observed data. The results were as follows: the best-fitting function between the number of impacting sand particles and the amount of collected sand was a linear relationship. The average value of R2 was 0.7702, and the average sand collection efficiency of the sand collector at a height of 5 cm was 94.3%, indicating good sand collection performance. From all field tests conducted so far, it appeared that a high-precision sand sampler was a useful device for making field measurements of horizontal dust fluxes and ascertaining the relationship between transition particles and wind speed. In the future, the equipment costs and wind drive will continue to be optimized.


2021 ◽  
Author(s):  
Liu Xinchun ◽  
kang yongde ◽  
Chen Hongna ◽  
Lu Hui

Abstract Near-surface (10 m) wind speed (NWS) plays a crucial role in many areas, including the hydrological cycle, wind energy production, and the dispersion of air pollution. Based on wind speed data from Tazhong and the northern margins of the Taklimakan Desert in Xiaotang in spring, summer, autumn, and winter of 2014 and 2015, statistical methods were applied to determine the characteristics of the diurnal changes in wind speed near the ground and the differences in the wind speed profiles between the two sites. The average wind speed on a sunny day increased slowly with height during the day and rapidly at night. At heights below 4 m the wind speed during the day was higher than at night, whereas at 10 m the wind speed was lower during the day than at night. The semi-empirical theory and Monin-Obukhov (M-O) similarity theory were used to fit the NWS profile in the hinterland of the Tazhong Desert. A logarithmic law was applied to the neutral stratification wind speed profile, and an exponential fitting correlation was used for non-neutral stratification. The more unstable the stratification, the smaller the n. Using M-O similarity theory, the “linear to tens of” law was applied to the near-neutral stratification. According to the measured data, the distribution of φM with stability was obtained. The γm was obtained when the near-surface stratum was stable in the hinterland of Tazhong Desert and the βm was obtained when it was unstable. In summer, γm and βm were 5.84 and 15.1, respectively, while in winter, γm and βm were 1.9 and 27.1, respectively.


2012 ◽  
Vol 1 (33) ◽  
pp. 91 ◽  
Author(s):  
Antoine Tresca ◽  
Marie-Hélène Ruz ◽  
Stéphane Raison ◽  
Pascal Grégoire

The shoreline of Dunkirk Seaport partly consists of a macrotidal beach oriented WSW-ENE backed by a 6 km long coated dike called “digue du Braek”. Aeolian sand transport was estimated on asphalt by means of sand traps. Also, time-averaged wind speed profiles were measured using cup anemometers under various wind velocities and directions along a transversal profile on the dike and the upper beach. High rates of sand transport enabled the setup of different kinds of experimental windbreaks on asphalt, in order to test potential dune formation on this kind of substrate. Under oblique onshore winds, it was regularly observed that amounts of sand captured in the traps placed on the dike were more important than those in traps placed on the upper beach. These results were related to sand sources: windblown sand captured on the dike originated from the coastal dunes developed at the dike toe, while sand trapped on the upper beach came from the tidal zone were aeolian transport is limited by complex intertidal bar-trough topography. It also appeared from the topographic surveys carried out on the windbreaks that although their location seemed to play a major role on the amount of sand captured, fences and synthetic fabrics deployed on sandy surfaces were also able to trap windblown sand on the seaport dike.


2014 ◽  
Vol 599-601 ◽  
pp. 1605-1609 ◽  
Author(s):  
Ming Zeng ◽  
Zhan Xie Wu ◽  
Qing Hao Meng ◽  
Jing Hai Li ◽  
Shu Gen Ma

The wind is the main factor to influence the propagation of gas in the atmosphere. Therefore, the wind signal obtained by anemometer will provide us valuable clues for searching gas leakage sources. In this paper, the Recurrence Plot (RP) and Recurrence Quantification Analysis (RQA) are applied to analyze the influence of recurrence characteristics of the wind speed time series under the condition of the same place, the same time period and with the sampling frequency of 1hz, 2hz, 4.2hz, 5hz, 8.3hz, 12.5hz and 16.7hz respectively. Research results show that when the sampling frequency is higher than 5hz, the trends of recurrence nature of different groups are basically unchanged. However, when the sampling frequency is set below 5hz, the original trend of recurrence nature is destroyed, because the recurrence characteristic curves obtained using different sampling frequencies appear cross or overlapping phenomena. The above results indicate that the anemometer will not be able to fully capture the detailed information in wind field when its sampling frequency is lower than 5hz. The recurrence characteristics analysis of the wind speed signals provides an important basis for the optimal selection of anemometer.


Geomorphology ◽  
2008 ◽  
Vol 96 (1-2) ◽  
pp. 39-47 ◽  
Author(s):  
Ruiping Zu ◽  
Xian Xue ◽  
Mingrui Qiang ◽  
Bao Yang ◽  
Jianjun Qu ◽  
...  

2006 ◽  
Vol 63 (9) ◽  
pp. 2169-2193 ◽  
Author(s):  
Jeffrey D. Kepert

Abstract The GPS dropsonde allows observations at unprecedentedly high horizontal and vertical resolution, and of very high accuracy, within the tropical cyclone boundary layer. These data are used to document the boundary layer wind field of the core of Hurricane Georges (1998) when it was close to its maximum intensity. The spatial variability of the boundary layer wind structure is found to agree very well with the theoretical predictions in the works of Kepert and Wang. In particular, the ratio of the near-surface wind speed to that above the boundary layer is found to increase inward toward the radius of maximum winds and to be larger to the left of the track than to the right, while the low-level wind maximum is both more marked and at lower altitude on the left of the storm track than on the right. However, the expected supergradient flow in the upper boundary layer is not found, with the winds being diagnosed as close to gradient balance. The tropical cyclone boundary layer model of Kepert and Wang is used to simulate the boundary layer flow in Hurricane Georges. The simulated wind profiles are in good agreement with the observations, and the asymmetries are well captured. In addition, it is found that the modeled flow in the upper boundary layer at the eyewall is barely supergradient, in contrast to previously studied cases. It is argued that this lack of supergradient flow is a consequence of the particular radial structure in Georges, which had a comparatively slow decrease of wind speed with radius outside the eyewall. This radial profile leads to a relatively weak gradient of inertial stability near the eyewall and a strong gradient at larger radii, and hence the tropical cyclone boundary layer dynamics described by Kepert and Wang can produce only marginally supergradient flow near the radius of maximum winds. The lack of supergradient flow, diagnosed from the observational analysis, is thus attributed to the large-scale structure of this particular storm. A companion paper presents a similar analysis for Hurricane Mitch (1998), with contrasting results.


2012 ◽  
Vol 58 (209) ◽  
pp. 529-539 ◽  
Author(s):  
Shin Sugiyama ◽  
Hiroyuki Enomoto ◽  
Shuji Fujita ◽  
Kotaro Fukui ◽  
Fumio Nakazawa ◽  
...  

AbstractDuring the Japanese-Swedish Antarctic traverse expedition of 2007/08, we measured the surface snow density at 46 locations along the 2800 km long route from Syowa station to Wasa station in East Antarctica. The mean snow density for the upper 1 (or 0.5) m layer varied from 333 to 439 kg m-3 over a region spanning an elevation range of 365-3800 ma.s.l. The density variations were associated with the elevation of the sampling sites; the density decreased as the elevation increased, moving from the coastal region inland. However, the density was relatively insensitive to the change in elevation along the ridge on the Antarctic plateau between Dome F and Kohnen stations. Because surface wind is weak in this region, irrespective of elevation, the wind speed was suggested to play a key role in the near-surface densification. The results of multiple regression performed on the density using meteorological variables were significantly improved by the inclusion of wind speed as a predictor. The regression analysis yielded a linear dependence between the density and the wind speed, with a coefficient of 13.5 kg m-3 (m s-1)-1. This relationship is nearly three times stronger than a value previously computed from a dataset available in Antarctica. Our data indicate that the wind speed is more important to estimates of the surface snow density in Antarctica than has been previously assumed.


2017 ◽  
Vol 56 (8) ◽  
pp. 2239-2258 ◽  
Author(s):  
Jonathan D. Wille ◽  
David H. Bromwich ◽  
John J. Cassano ◽  
Melissa A. Nigro ◽  
Marian E. Mateling ◽  
...  

AbstractAccurately predicting moisture and stability in the Antarctic planetary boundary layer (PBL) is essential for low-cloud forecasts, especially when Antarctic forecasters often use relative humidity as a proxy for cloud cover. These forecasters typically rely on the Antarctic Mesoscale Prediction System (AMPS) Polar Weather Research and Forecasting (Polar WRF) Model for high-resolution forecasts. To complement the PBL observations from the 30-m Alexander Tall Tower! (ATT) on the Ross Ice Shelf as discussed in a recent paper by Wille and coworkers, a field campaign was conducted at the ATT site from 13 to 26 January 2014 using Small Unmanned Meteorological Observer (SUMO) aerial systems to collect PBL data. The 3-km-resolution AMPS forecast output is combined with the global European Centre for Medium-Range Weather Forecasts interim reanalysis (ERAI), SUMO flights, and ATT data to describe atmospheric conditions on the Ross Ice Shelf. The SUMO comparison showed that AMPS had an average 2–3 m s−1 high wind speed bias from the near surface to 600 m, which led to excessive mechanical mixing and reduced stability in the PBL. As discussed in previous Polar WRF studies, the Mellor–Yamada–Janjić PBL scheme is likely responsible for the high wind speed bias. The SUMO comparison also showed a near-surface 10–15-percentage-point dry relative humidity bias in AMPS that increased to a 25–30-percentage-point deficit from 200 to 400 m above the surface. A large dry bias at these critical heights for aircraft operations implies poor AMPS low-cloud forecasts. The ERAI showed that the katabatic flow from the Transantarctic Mountains is unrealistically dry in AMPS.


2017 ◽  
Vol 56 (11) ◽  
pp. 3035-3047 ◽  
Author(s):  
Steven J. A. van der Linden ◽  
Peter Baas ◽  
J. Antoon van Hooft ◽  
Ivo G. S. van Hooijdonk ◽  
Fred C. Bosveld ◽  
...  

AbstractGeostrophic wind speed data, derived from pressure observations, are used in combination with tower measurements to investigate the nocturnal stable boundary layer at Cabauw, the Netherlands. Since the geostrophic wind speed is not directly influenced by local nocturnal stability, it may be regarded as an external forcing parameter of the nocturnal stable boundary layer. This is in contrast to local parameters such as in situ wind speed, the Monin–Obukhov stability parameter (z/L), or the local Richardson number. To characterize the stable boundary layer, ensemble averages of clear-sky nights with similar geostrophic wind speeds are formed. In this manner, the mean dynamical behavior of near-surface turbulent characteristics and composite profiles of wind and temperature are systematically investigated. The classification is found to result in a gradual ordering of the diagnosed variables in terms of the geostrophic wind speed. In an ensemble sense the transition from the weakly stable to very stable boundary layer is more gradual than expected. Interestingly, for very weak geostrophic winds, turbulent activity is found to be negligibly small while the resulting boundary cooling stays finite. Realistic numerical simulations for those cases should therefore have a comprehensive description of other thermodynamic processes such as soil heat conduction and radiative transfer.


Sign in / Sign up

Export Citation Format

Share Document