neutral stratification
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 4)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Liu Xinchun ◽  
kang yongde ◽  
Chen Hongna ◽  
Lu Hui

Abstract Near-surface (10 m) wind speed (NWS) plays a crucial role in many areas, including the hydrological cycle, wind energy production, and the dispersion of air pollution. Based on wind speed data from Tazhong and the northern margins of the Taklimakan Desert in Xiaotang in spring, summer, autumn, and winter of 2014 and 2015, statistical methods were applied to determine the characteristics of the diurnal changes in wind speed near the ground and the differences in the wind speed profiles between the two sites. The average wind speed on a sunny day increased slowly with height during the day and rapidly at night. At heights below 4 m the wind speed during the day was higher than at night, whereas at 10 m the wind speed was lower during the day than at night. The semi-empirical theory and Monin-Obukhov (M-O) similarity theory were used to fit the NWS profile in the hinterland of the Tazhong Desert. A logarithmic law was applied to the neutral stratification wind speed profile, and an exponential fitting correlation was used for non-neutral stratification. The more unstable the stratification, the smaller the n. Using M-O similarity theory, the “linear to tens of” law was applied to the near-neutral stratification. According to the measured data, the distribution of φM with stability was obtained. The γm was obtained when the near-surface stratum was stable in the hinterland of Tazhong Desert and the βm was obtained when it was unstable. In summer, γm and βm were 5.84 and 15.1, respectively, while in winter, γm and βm were 1.9 and 27.1, respectively.


Author(s):  
Hugh Morrison ◽  
John M. Peters ◽  
Steven C. Sherwood

AbstractThe spreading rates of convective thermals are linked to their net entrainment, and previous literature has suggested differences in spreading rates between moist and dry thermals. In this study, growth rates of idealized numerically-simulated axisymmetric dry and moist convective thermals are directly compared. In an environment with dry-neutral stratification, the increase of thermal radius with height, dR/dz, is a factor of 1.7 larger for dry compared to moist thermals. The fractional change in thermal volume ε is also greater for dry thermals within a distance of ~4 radii from the initial thermal height. Values of dR/dz are nearly constant with height for both moist and dry thermals consistent with classical theory based on dimensional analysis. The simulations are also consistent with theory relating impulse, circulation, and spreading rate for dry thermals proposed in previous papers and extended here to moist thermals, predicting they will spread less than dry thermals. Tests adding heating to dry thermals, either spread uniformly across the thermal volume or concentrated in the inner core, indicate dR/dz and ε are smaller for moist thermals because latent heating is confined mostly to their cores. Additional axisymmetric moist simulations using modified lapse rates and large eddy simulations support this analysis. Overall, these results indicate that slow spreading rates are a fundamental feature of moist thermals caused by latent heating which alters the spatial distribution of buoyancy within them compared to dry thermals.


2019 ◽  
Vol 487 (3) ◽  
pp. 257-261
Author(s):  
A. V. Glazunov ◽  
G. V. Zasko ◽  
E. V. Mortikov ◽  
Y. M. Nechepurenko

Direct numerical simulation data of a stably stratified turbulent Couette flow contains two types of organized structures: the rolls that arise at neutral and close to neutral stratification, and the layered structures, which manifest themselves as the static stability increases. It is shown that both types of structures have spatial scales and forms that coincide with the scales and forms of the corresponding optimal disturbances of the simplified linear model of the Couette flow with the same Richardson numbers.


2019 ◽  
Vol 82 ◽  
pp. 81-90
Author(s):  
P. Auclair-Desrotour ◽  
J. Laskar ◽  
S. Mathis

Atmospheric tides can have a strong impact on the rotational dynamics of planets. They are of most importance for terrestrial planets located in the habitable zone of their host star, where their competition with solid tides is likely to drive the body towards non-synchronized rotation states of equilibrium, as observed in the case of Venus. Contrary to other planetary layers, the atmosphere is sensitive to both gravitational and thermal forcings, through a complex dynamical coupling involving the effects of Coriolis acceleration and characteristics of the atmospheric structure. These key physics are usually not taken into account in modelings used to compute the evolution of planetary systems, where tides are described with parametrised prescriptions. In this work, we present a new ab initio modeling of atmospheric tides adapting the theory of the Earth’s atmospheric tides (Chapman & Lindzen 1970) to other terrestrial planets. We derive analytic expressions of the tidal torque, as a function of the tidal frequency and parameters characterizing the internal structure (e.g. the Brunt-Väisälä frequency, the radiative frequency, the pressure heigh scale). We show that stratification plays a key role, the tidal torque being strong in the case of convective atmospheres (i.e. with a neutral stratification) and weak in case of atmosphere convectively stable. In a second step, the model is used to determine the non-synchronized rotation states of equilibrium of Venus-like planets as functions of the physical parameters of the system. These results are detailed in Auclair-Desrotour et al. (2016a) and Auclair-Desrotour et al. (2016b).


Author(s):  
Tobias Gronemeier ◽  
Siegfried Raasch ◽  
Edward Ng

Ventilation in cities is crucial for the well being of their inhabitants. Therefore, local governments require air ventilation assessments (AVAs) prior to the construction of new buildings. In a standard AVA, however, only neutral stratification is considered, although diabatic and particularly unstable conditions may be observed more frequently in nature. The results presented here indicate significant changes in ventilation within most of the area of Kowloon City, Hong Kong, included in the study. A new definition for calculating ventilation was introduced, and used to compare the influence of buildings on ventilation under conditions of neutral and unstable stratification. The overall ventilation increased due to enhanced vertical mixing. In the vicinity of exposed buildings, however, ventilation was weaker for unstable stratification than for neutral stratification. The influence on ventilation by building parameters, such as the plan area index, was altered when unstable stratification was considered. Consequently, differences in stratification were shown to have marked effects on ventilation estimates, which should be taken into consideration in future AVAs.


2016 ◽  
Vol 805 ◽  
pp. 611-635 ◽  
Author(s):  
Cedrick Ansorge ◽  
Juan Pedro Mellado

Existence of non-turbulent flow patches in the vicinity of the wall of a turbulent flow is known as global intermittency. Global intermittency challenges the conventional statistics approach when describing turbulence in the inner layer and calls for the use of conditional statistics. We extend the vorticity-based conditioning of a flow to turbulent and non-turbulent sub-volumes by a high-pass filter operation. This modified method consistently detects non-turbulent flow patches in the outer and inner layers for stratifications ranging from the neutral limit to extreme stability, where the flow is close to a complete laminarization. When applying this conditioning method to direct numerical simulation data of stably stratified Ekman flow, we find the following. First, external intermittency has a strong effect on the logarithmic law for the mean velocity in Ekman flow under neutral stratification. If instead of the full field, only turbulent sub-volumes are considered, the data fit an idealized logarithmic velocity profile much better; in particular, a problematic dip in the von Kármán measure$\unicode[STIX]{x1D705}$in the surface layer is decreased by approximately 50 % and our data only support the reduced range$0.41\lesssim \unicode[STIX]{x1D705}\lesssim 0.43$. Second, order-one changes in turbulent quantities under strong stratification can be explained by a modulation of the turbulent volume fraction rather than by a structural change of individual turbulence events; within the turbulent fraction of the flow, the character of individual turbulence events measured in terms of turbulence dissipation rate or variance of velocity fluctuations is similar to that under neutral stratification.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yongqiang Liu ◽  
Ali Mamtimin ◽  
Wen Huo ◽  
Xinghua Yang ◽  
Xinchun Liu ◽  
...  

Observed turbulent fluxes, wind, and temperature profiles at Tazhong station over the hinterland of the Taklimakan Desert in China have been analyzed to evaluate empirical parameters used in the profile functions of desert surface layer. The von Kármán constant derived from our observations is about 0.396 in near-neutral stratification, which is in good agreement with many other studies for different underlying surface. In our analysis, the turbulent Prandtl number is about 0.75 in near-neutral conditions. For unstable range, the nondimensional wind and temperature profile functions are best fitted by the exponents of −1/4 and −1/2, respectively. The linear relations still hold for stable stratification in this extremely arid desert. However, the parameters used in their profile functions need to be revised to be applicable for desert surfaces.


2015 ◽  
Vol 54 (1) ◽  
pp. 42-57 ◽  
Author(s):  
Michael T. Kiefer ◽  
Warren E. Heilman ◽  
Shiyuan Zhong ◽  
Joseph J. Charney ◽  
Xindi Bian

AbstractThis study examines the sensitivity of mean and turbulent flow in the planetary boundary layer and roughness sublayer to a low-intensity fire and evaluates whether the sensitivity is dependent on canopy and background atmospheric properties. The ARPS-CANOPY model, a modified version of the Advanced Regional Prediction System (ARPS) model with a canopy parameterization, is utilized for this purpose. A series of numerical experiments are conducted to evaluate whether the ability of the fire to alter downstream wind, temperature, turbulent kinetic energy (TKE), and vertical heat flux differs between forested and open areas, sparse and dense forests, weak and strong background flow, and neutral and convective background stability. Analysis of all experiments shows that, in general, mean and turbulent flow both prior to and during a low-intensity fire is damped in the presence of a canopy. Greater sensitivity to the fire is found in cases with strong ambient wind speed than in cases with quiescent or weak wind speed. Furthermore, sensitivity of downstream atmospheric conditions to the fire is shown to be strongest with a neutrally stratified background. An analysis of the TKE budget reveals that both buoyancy and wind shear contribute to TKE production during the period of time in which the fire conditions are applied to the model. On the basis of the results of the ARPS simulations, caution is advised when applying ARPS-simulation results to predictions of smoke transport and dispersion: smoke-model users should consider whether canopy impacts on the atmosphere are accounted for and whether neutral stratification is assumed.


Sign in / Sign up

Export Citation Format

Share Document