Characteristics of near-surface wind regimes in the Taklimakan Desert, China

Geomorphology ◽  
2008 ◽  
Vol 96 (1-2) ◽  
pp. 39-47 ◽  
Author(s):  
Ruiping Zu ◽  
Xian Xue ◽  
Mingrui Qiang ◽  
Bao Yang ◽  
Jianjun Qu ◽  
...  
2021 ◽  
Author(s):  
Liu Xinchun ◽  
kang yongde ◽  
Chen Hongna ◽  
Lu Hui

Abstract Near-surface (10 m) wind speed (NWS) plays a crucial role in many areas, including the hydrological cycle, wind energy production, and the dispersion of air pollution. Based on wind speed data from Tazhong and the northern margins of the Taklimakan Desert in Xiaotang in spring, summer, autumn, and winter of 2014 and 2015, statistical methods were applied to determine the characteristics of the diurnal changes in wind speed near the ground and the differences in the wind speed profiles between the two sites. The average wind speed on a sunny day increased slowly with height during the day and rapidly at night. At heights below 4 m the wind speed during the day was higher than at night, whereas at 10 m the wind speed was lower during the day than at night. The semi-empirical theory and Monin-Obukhov (M-O) similarity theory were used to fit the NWS profile in the hinterland of the Tazhong Desert. A logarithmic law was applied to the neutral stratification wind speed profile, and an exponential fitting correlation was used for non-neutral stratification. The more unstable the stratification, the smaller the n. Using M-O similarity theory, the “linear to tens of” law was applied to the near-neutral stratification. According to the measured data, the distribution of φM with stability was obtained. The γm was obtained when the near-surface stratum was stable in the hinterland of Tazhong Desert and the βm was obtained when it was unstable. In summer, γm and βm were 5.84 and 15.1, respectively, while in winter, γm and βm were 1.9 and 27.1, respectively.


Author(s):  
Robert M. Banta ◽  
Yelena L. Pichugina ◽  
Lisa S. Darby ◽  
W. Alan Brewer ◽  
Joseph B. Olson ◽  
...  

AbstractComplex-terrain locations often have repeatable near-surface wind patterns, such as synoptic gap flows and local thermally forced flows. An example is the Columbia River Valley in east-central Oregon-Washington, a significant wind-energy-generation region and the site of the Second Wind-Forecast Improvement Project (WFIP2). Data from three Doppler lidars deployed during WFIP2 define and characterize summertime wind regimes and their large-scale contexts, and provide insight into NWP model errors by examining differences in the ability of a model [NOAA’s High-Resolution Rapid-Refresh (HRRR-version1)] to forecast wind-speed profiles for different regimes. Seven regimes were identified based on daily time series of the lidar-measured rotor-layer winds, which then suggested two broad categories. First, in three regimes the primary dynamic forcing was the large-scale pressure gradient. Second, in two regimes the dominant forcing was the diurnal heating-cooling cycle (regional sea-breeze-type dynamics), including the marine intrusion previously described, which generates strong nocturnal winds over the region. The other two included a hybrid regime and a non-conforming regime. For the large-scale pressure-gradient regimes, HRRR had wind-speed biases of ~1 m s−1 and RMSEs of 2-3 m s−1. Errors were much larger for the thermally forced regimes, owing to the premature demise of the strong nocturnal flow in HRRR. Thus, the more dominant the role of surface heating in generating the flow, the larger the errors. Major errors could result from surface heating of the atmosphere, boundary-layer responses to that heating, and associated terrain interactions. Measurement/modeling research programs should be aimed at determining which modeled processes produce the largest errors, so those processes can be improved and errors reduced.


2013 ◽  
Vol 5 (2) ◽  
pp. 199-206 ◽  
Author(s):  
XingHua Yang ◽  
Qing He ◽  
Mamtimin Ali ◽  
Wen Huo ◽  
XinChun Liu

2021 ◽  
pp. 1-53
Author(s):  
Victor Rousseau ◽  
Emilia Sanchez-Gomez ◽  
Rym Msadek ◽  
Marie-Pierre Moine

AbstractAir-sea interaction processes over the Gulf Stream have received particular attention over the last decade. It has been shown that sea surface temperature (SST) gradients over the Gulf Stream can alter the near surface wind divergence through changes in the marine atmospheric boundary layer (MABL). Two mechanisms have been proposed to explain the response: the Vertical Mixing Mechanism (VMM) and the Pressure Adjustment Mechanism (PAM). However, their respective contribution is still under debate. It has been argued that the synoptic perturbations over the Gulf Stream can provide more insight on the MABL response to SST fronts. We analyze the VMM and PAM under different atmospheric conditions obtained from a classification method based on the deciles of the statistical distribution of winter turbulent heat fluxes over the Gulf Stream. Lowest deciles are associated with weak air-sea interactions and anticyclonic atmospheric circulation over the Gulf Stream, whereas highest deciles are related to strong air-sea interactions and a cyclonic circulation. Our analysis includes the low and high-resolution versions of the ARPEGEv6 atmospheric model forced by observed SST, and the recently released ERA5 global reanalysis. We find that the occurrence of anticyclonic and cyclonic perturbations associated with different anomalous wind regimes can locally modulate the activation of the VMM and the PAM. In particular, the PAM is predominant in anticyclonic conditions, whereas both mechanisms are equally present in most of the cyclonic conditions. Our results highlight the role of the atmospheric circulation and associated anomalous winds in the location, strength and occurrence of both mechanisms.


2014 ◽  
Vol 599-601 ◽  
pp. 1605-1609 ◽  
Author(s):  
Ming Zeng ◽  
Zhan Xie Wu ◽  
Qing Hao Meng ◽  
Jing Hai Li ◽  
Shu Gen Ma

The wind is the main factor to influence the propagation of gas in the atmosphere. Therefore, the wind signal obtained by anemometer will provide us valuable clues for searching gas leakage sources. In this paper, the Recurrence Plot (RP) and Recurrence Quantification Analysis (RQA) are applied to analyze the influence of recurrence characteristics of the wind speed time series under the condition of the same place, the same time period and with the sampling frequency of 1hz, 2hz, 4.2hz, 5hz, 8.3hz, 12.5hz and 16.7hz respectively. Research results show that when the sampling frequency is higher than 5hz, the trends of recurrence nature of different groups are basically unchanged. However, when the sampling frequency is set below 5hz, the original trend of recurrence nature is destroyed, because the recurrence characteristic curves obtained using different sampling frequencies appear cross or overlapping phenomena. The above results indicate that the anemometer will not be able to fully capture the detailed information in wind field when its sampling frequency is lower than 5hz. The recurrence characteristics analysis of the wind speed signals provides an important basis for the optimal selection of anemometer.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 766
Author(s):  
Yi Jiang ◽  
Shuai Han ◽  
Chunxiang Shi ◽  
Tao Gao ◽  
Honghui Zhen ◽  
...  

Near-surface wind data are particularly important for Hainan Island and the South China Sea, and there is a wide range of wind data sources. A detailed understanding of the reliability of these datasets can help us to carry out related research. In this study, the hourly near-surface wind data from the High-Resolution China Meteorological Administration (CMA) Land Data Assimilation System (HRCLDAS) and the fifth-generation ECMWF atmospheric reanalysis data (ERA5) were evaluated by comparison with the ground automatic meteorological observation data for Hainan Island and the South China Sea. The results are as follows: (1) the HRCLDAS and ERA5 near-surface wind data trend was basically the same as the observation data trend, but there was a smaller bias, smaller root-mean-square errors, and higher correlation coefficients between the near-surface wind data from HRCLDAS and the observations; (2) the quality of HRCLDAS and ERA5 near-surface wind data was better over the islands of the South China Sea than over Hainan Island land. However, over the coastal areas of Hainan Island and island stations near Sansha, the quality of the HRCLDAS near-surface wind data was better than that of ERA5; (3) the quality of HRCLDAS near-surface wind data was better than that of ERA5 over different types of landforms. The deviation of ERA5 and HRCLDAS wind speed was the largest along the coast, and the quality of the ERA5 wind direction data was poorest over the mountains, whereas that of HRCLDAS was poorest over hilly areas; (4) the accuracy of HRCLDAS at all wind levels was higher than that of ERA5. ERA5 significantly overestimated low-grade winds and underestimated high-grade winds. The accuracy of HRCLDAS wind ratings over the islands of the South China Sea was significantly higher than that over Hainan Island land, especially for the higher wind ratings; and (5) in the typhoon process, the simulation of wind by HRCLDAS was closer to the observations, and its simulation of higher wind speeds was more accurate than the ERA5 simulations.


Sign in / Sign up

Export Citation Format

Share Document