The comparison and analysis of Type 3 wind turbine models used for researching the stability of electric power systems

Author(s):  
Igor Razzhivin ◽  
Aleksey Suvorov ◽  
Mikhail Andreev ◽  
Alisher Askarov

Abstract The dominant trend of the modern energy is the use of generating plants based on renewable energy sources, among which the most common is a wind power plant based on doubly fed induction generator (Type 3 WT). The large-scale introduction of Type 3 WT into the modern power systems significantly changes their dynamic properties. There are problems with ensuring the basic condition of the reliability and the survivability of power systems – the stability. The study and solution of the indicated problems is possible only with the help of the mathematical modeling of a large-scale power systems which is currently being carried out with the help of widespread purely numerical software tools of calculations of modes and processes, which are characterized by various simplifications and limitations. For the properties and capabilities of software tools for studying stability issues, mathematical models of Type 3 WT, the so-called generic models, which also have simplifications and limitations, are adapted. In this article, the reliability of stability calculations of a real power system with Type 3 WT using software tools was evaluated, which allows to identify the influence of the applied simplifications and restrictions with a purely numerical approach on the quality of solving problems of assessing the stability of power systems with Type 3 WT. Also, the studies made it possible to identify the areas of the application of generic models of Type 3 WT as a part of the model of the real dimension power system, at which the greatest and least errors arise, as well as their causes. Such a comprehensive assessment becomes feasible due to the alternative approach proposed in the article, based on the use of a detail benchmark tool model instead of the full-scale data to compare the results of modeling.

Author(s):  
Roghieh Abdollahi Biroon ◽  
Pierluigi Pisu ◽  
David Schoenwald

The increasing penetration of renewable energy sources in power grids highlights the role of battery energy stor- age systems (BESSs) in enhancing the stability and reliability of electricity. A key challenge with the renewables’, specially the BESSs, integration into the power system is the lack of proper dynamic model for stability analysis. Moreover, a proper control design for the power system is a complicated issue due to its complexity and inter-connectivity. Thus, the application of decentralized control to improve the stability of a large- scale power system is inevitable, especially in distributed energy sources (DERs). This paper presents an optimal distributed hybrid control design for the interconnected systems to suppress the effects of small disturbances in the power system employing utility-scale batteries based on existing battery models. The results show that i) the smart scheduling of the batteries’ output reduces the inter-area oscillations and improves the stability of the power systems; ii) the hybrid model of the battery is more user-friendly compared to the Western electricity coordinating council (WECC) model in power system analysis.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5605
Author(s):  
Roghieh Abdollahi Biroon ◽  
Pierluigi Pisu ◽  
David Schoenwald

The increasing penetration of renewable energy sources in power grids highlights the role of battery energy storage systems (BESSs) in enhancing the stability and reliability of electricity. A key challenge with the renewables’, specially the BESSs, integration into the power system is the lack of proper dynamic models and their application in power system analyses. The control design strategy mainly depends on the system dynamics which underlines the importance of the system accurate dynamic modeling. Moreover, control design for the power system is a complicated issue due to its complexity and inter-connectivity, which makes the application of distributed control to improve the stability of a large-scale power system inevitable. This paper presents an optimal distributed control design for the interconnected systems to suppress the effects of small disturbances in the power system employing utility-scale batteries based on existing battery models. The control strategy is applied to two dynamic models of the battery: hybrid model and Western electricity coordinating council (WECC) model. The results show that (i) the smart scheduling of the batteries’ output reduces the inter-area oscillations and improves the stability of the power systems; (ii) the hybrid model of the battery is more user-friendly compared to the WECC model in power system analyses.


2019 ◽  
Vol 116 ◽  
pp. 00042
Author(s):  
Małgorzata Kwestarz ◽  
Maciej Chaczykowski

The power systems in European Union operate under energy policies where the greenhouse gases reduction, the increase of the share of renewable energy sources (RES) and the improvements in energy efficiency are the main objectives. Polish energy sector is currently based on inefficient usage of coal and must be transformed according to the requirements of EU energy and climate policy. A policy framework for climate and energy in the period from 2020 to 2030 established the target of 27% of share of RES in energy consumption. With the continuing increase in the use of RES, it is likely that more and more generation will have to be curtailed to maintain the stability of the power system which was not originally designed to integrate renewable generation. In this context, the conversion of renewable electricity to heat in connection with its storage in district heating systems, known as Power-to-Heat (PtH) can be considered as a viable option in increasing the share of RES and facilitating the stability of the power system. In this paper an attempt is made to estimate the potential of PtH technology for Poland up to 2030, including the high RES share scenario for the energy mix development.


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 769
Author(s):  
Dongmin Kim ◽  
Jung-Wook Park ◽  
Soo Hyoung Lee

Converter-based generators (CBGs) that use renewable energy sources (RESs) are replacing traditional aging coal and nuclear power generators. Increasing the penetration of CBGs into the entire power generation process reduces both the inertia constant of the power system and the total amount of power reserves. Additionally, RESs are very intermittent and it is difficult to predict changes in them. These problems, due to CBGs using RESs, pose new challenges to net–load balancing. As a solution, this paper proposes a virtual multi-slack (VMS) droop control that secures the stability and efficiency of system operation by controlling the output of CBGs distributed in various regions. The VMS droop control makes it possible to increase the inertia constant of the power system and to respond quickly and appropriately to load changes through the proposed VMS droop control based on power sensitivity. It is also proposed that the process selects proper power reserves of CBGs for stable VMS droop control. To verify the effectiveness of the proposed VMS droop control and the proper power reserve selection method for CBGs, several case studies were performed using a real Korean power system.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8529
Author(s):  
Dhanuja Lekshmi J ◽  
Zakir Hussain Rather ◽  
Bikash C Pal

With diminishing fossil fuel resources and increasing environmental concerns, large-scale deployment of Renewable Energy Sources (RES) has accelerated the transition towards clean energy systems, leading to significant RES generation share in power systems worldwide. Among different RES, solar PV is receiving major focus as it is most abundant in nature compared to others, complimented by falling prices of PV technology. However, variable, intermittent and non-synchronous nature of PV power generation technology introduces several technical challenges, ranging from short-term issues, such as low inertia, frequency stability, voltage stability and small signal stability, to long-term issues, such as unit commitment and scheduling issues. Therefore, such technical issues often limit the amount of non-synchronous instantaneous power that can be securely accommodated by a grid. In this backdrop, this research work proposes a tool to estimate maximum PV penetration level that a given power system can securely accommodate for a given unit commitment interval. The proposed tool will consider voltage and frequency while estimating maximum PV power penetration of a system. The tool will be useful to a system operator in assessing grid stability and security under a given generation mix, network topology and PV penetration level. Besides estimating maximum PV penetration, the proposed tool provides useful inputs to the system operator which will allow the operator to take necessary actions to handle high PV penetration in a secure and stable manner.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5786
Author(s):  
Stefanos Ntomalis ◽  
Petros Iliadis ◽  
Konstantinos Atsonios ◽  
Athanasios Nesiadis ◽  
Nikos Nikolopoulos ◽  
...  

The defossilization of power generation is a prerequisite goal in order to reduce greenhouse gas emissions and transit for a sustainable economy. Achieving this goal requires increasing the penetration of renewable energy sources (RESs) such as solar and wind power. The gradual shrinking of conventional generation units in an energy map introduces new challenges to the stability of power systems as there is a considerable reduction of stored rotational energy in the synchronous generators (SGs) and the capability to control their power output, which has been taken for granted until today. Inertia and primary reserve reduction have a substantial effect on the ability of the power system to maintain its security and self-resilience during contingency events. Such issues become more evident in the case of non-interconnected islands (NII) as they have unique features associated with their small size and low inertia. The present study examines in depth the NII system of Madeira, which is composed of thermal, hydro, solid-waste, wind and solar generation units, and additional RES integration is planned for the near future. Electromagnetic transient (EMT) simulations are performed for both the current and future states of the system, including the installation of planned variable RES capacities. To alleviate the stability issues that occurred in the high-RES scenario, the introduction of a utility-scale battery energy storage system (BESS), capable of mitigating the active power imbalance due to the power system’s disturbances resultant of RES penetration, is examined. In addition, a comparison between a flywheel energy storage system (FESS) and BESS is shortly investigated. The grid has been modeled and simulated utilizing the open-source, object-oriented modeling language Modelica. The dynamic simulation results proved that battery storage is a promising technology that can be a solution for transitioning to a sustainable power system, maintaining its self-resilience under severe disturbances such as rapid load changes, the tripping of generation units and short-circuits.


2019 ◽  
Vol 7 (1) ◽  
pp. 36-44
Author(s):  
Jorge Andrés Pérez ◽  
Ellis Moisés Reyes ◽  
Tannia Karina Vindel

The ancillary services are essential in the power Systems operation, historically this services haven’t been regulated in any way in Honduras. There have been changes recently into the regulatory framework in the entire electricity sector alongside the large-scale injection of photovoltaic and wind powered centrals in the System. Considering these scenarios, the ancillary services become a necessity in terms of the operation for the power system and the stability associated with it. In this paper, we analyze the technical and economic aspects related to the frequency control, voltage control and blackstart services, we compare the services provided in different countries and how it is possible to adapt the successful cases to the Honduran power system.


2020 ◽  
Vol 10 (21) ◽  
pp. 7592
Author(s):  
Georgios Tzounas ◽  
Ioannis Dassios ◽  
Muyang Liu ◽  
Federico Milano

This paper discusses the numerical solution of the generalized non-Hermitian eigenvalue problem. It provides a comprehensive comparison of existing algorithms, as well as of available free and open-source software tools, which are suitable for the solution of the eigenvalue problems that arise in the stability analysis of electric power systems. The paper focuses, in particular, on methods and software libraries that are able to handle the large-scale, non-symmetric matrices that arise in power system eigenvalue problems. These kinds of eigenvalue problems are particularly difficult for most numerical methods to handle. Thus, a review and fair comparison of existing algorithms and software tools is a valuable contribution for researchers and practitioners that are interested in power system dynamic analysis. The scalability and performance of the algorithms and libraries are duly discussed through case studies based on real-world electrical power networks. These are a model of the All-Island Irish Transmission System with 8640 variables; and, a model of the European Network of Transmission System Operators for Electricity, with 146,164 variables.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2606 ◽  
Author(s):  
Kontis ◽  
Barzegkar-Ntovom ◽  
Staios ◽  
Papadopoulos ◽  
Papagiannis

During the last decade the dynamic properties of power systems have been altered drastically, due to the emerge of new non-conventional types of loads as well as to the increasing penetration of distributed generation. To analyze the power system dynamics and develop accurate models, measurement-based techniques are usually employed by academia and power system operators. In this regard, in this paper an identification toolbox is developed for the derivation of measurement-based equivalent models and the analysis of dynamic responses. The toolbox incorporates eight of the most widely used mode identification techniques as well as several static and dynamic network equivalencing models. First, the theoretical background of the mode identification techniques as well as the mathematical formulation of the examined equivalent models is presented and analyzed. Additionally, multi-signal analysis methods are incorporated in the toolbox to facilitate the development of robust equivalent models. Additionally, an iterative procedure is adopted to automatically determine the optimal order of the derived models. The capabilities of the toolbox are demonstrated using simulation responses, acquired from large-scale benchmark power systems, as well as using measurements recorded at a laboratory-scale active distribution network.


2013 ◽  
pp. 1527-1545
Author(s):  
A. G. Tikdari ◽  
H. Bevrani ◽  
G. Ledwich

Power system dynamic analysis and security assessment are becoming more significant today due to increases in size and complexity from restructuring, emerging new uncertainties, integration of renewable energy sources, distributed generation, and micro grids. Precise modeling of all contributed elements/devices, understanding interactions in detail, and observing hidden dynamics using existing analysis tools/theorems are difficult, and even impossible. In this chapter, the power system is considered as a continuum and the propagated electromechanical waves initiated by faults and other random events are studied to provide a new scheme for stability investigation of a large dimensional system. For this purpose, the measured electrical indices (such as rotor angle and bus voltage) following a fault in different points among the network are used, and the behavior of the propagated waves through the lines, nodes, and buses is analyzed. The impact of weak transmission links on a progressive electromechanical wave using energy function concept is addressed. It is also emphasized that determining severity of a disturbance/contingency accurately, without considering the related electromechanical waves, hidden dynamics, and their properties is not secure enough. Considering these phenomena takes heavy and time consuming calculation, which is not suitable for online stability assessment problems. However, using a continuum model for a power system reduces the burden of complex calculations. Finally, a new power system emergency control framework based on descriptive study of electrical measurements and electromechanical wave propagation in large electric power systems is introduced. Since, fast and accurate detection of instability is essential in initiating certain emergency control measures, the proposed methodology could be also useful to detect the contingency condition and performing the well-known islanding and load shedding techniques. The chapter is supplemented by some illustrative nonlinear simulations on large scale test systems.


Sign in / Sign up

Export Citation Format

Share Document