scholarly journals Perfect Reconciliation in Quantum Key Distribution with Order-Two Frames

Author(s):  
Luis Adrián Lizama-Pérez ◽  
José Mauricio López-Romero

We present an error reconciliation method for Quantum Key Distribution (QKD) that corrects 100% of errors generated in regular binary frames transmitted over a noisy quantum channel regardless of the quantum channel error rate. In a previous investigation, we introduced a novel distillation QKD algorithm whose secret key rate descends linearly with respect to the channel error rate. Now, as the main achievement of this work, we demonstrate an improved algorithm capable of retaining almost all the secret information enclosed in the regular binary frames. Remarkably, this technique increases quadratically the secret key rate as a function of the double matching detection events and doubly quadratically in the number of the quantum pulses. Furthermore, this reconciliation method opens up the opportunity to use less attenuated quantum pulses, would allow greater QKD distances at drastically increased secret key rate. Since our method can be implemented as a software update, we hope that quantum key distribution technology would be fast deployed over global data networks in the quantum era.

Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1672
Author(s):  
Luis Adrián Lizama-Pérez ◽  
José Mauricio López-Romero

We present an error reconciliation method for Quantum Key Distribution (QKD) that corrects 100% of errors generated in regular binary frames transmitted over a noisy quantum channel regardless of the quantum channel error rate. In a previous investigation, we introduced a novel distillation QKD algorithm whose secret key rate descends linearly with respect to the channel error rate. Now, as the main achievement of this work, we demonstrate an improved algorithm capable of retaining almost all the secret information enclosed in the regular binary frames. Remarkably, this technique increases quadratically the secret key rate as a function of the double matching detection events and doubly quadratically in the number of the quantum pulses. Furthermore, this reconciliation method opens up the opportunity to use less attenuated quantum pulses, would allow greater QKD distances at drastically increased secret key rate. Since our method can be implemented as a software update, we hope that quantum key distribution technology would be fast deployed over global data networks in the quantum era.


2011 ◽  
Vol 11 (11&12) ◽  
pp. 937-947
Author(s):  
Hong-Wei Li ◽  
Zhen-Qiang Yin ◽  
Shuang Wang ◽  
Wan-Su Bao ◽  
Guang-Can Guo ◽  
...  

In practical quantum key distribution system, the state preparation and measurement have state-dependent imperfections comparing with the ideal BB84 protocol. If the state-dependent imperfection can not be regarded as an unitary transformation, it should not be considered as part of quantum channel noise introduced by the eavesdropper, the commonly used secret key rate formula GLLP can not be applied correspondingly. In this paper, the unconditional security of quantum key distribution with state-dependent imperfections will be analyzed by estimating upper bound of the phase error rate in the quantum channel and the imperfect measurement. Interestingly, since Eve can not control all phase error in the quantum key distribution system, the final secret key rate under constant quantum bit error rate can be improved comparing with the perfect quantum key distribution protocol.


2012 ◽  
pp. 13-19
Author(s):  
Riaz Ahmad Qamar ◽  
Mohd Aizaini Maarof ◽  
Subariah Ibrahim

A quantum key distribution protocol(QKD), known as BB84, was developed in 1984 by Charles Bennett and Gilles Brassard. The protocol works in two phases which are quantum state transmission and conventional post processing. In the first phase of BB84, raw key elements are distributed between two legitimate users by sending encoded photons through quantum channel whilst in the second phase, a common secret-key is obtained from correlated raw key elements by exchanging messages through a public channel e.g.; network or internet. The secret-key so obtained is used for cryptography purpose. Reconciliation is a compulsory part of post processing and hence of quantum key distribution protocol. The performance of a reconciliation protocol depends on the generation rate of common secret-key, number of bits disclosed and the error probability in common secrete-key. These characteristics of a protocol can be achieved by using a less interactive reconciliation protocol which can handle a higher initial quantum bit error rate (QBER). In this paper, we use a simple Bose, Chaudhuri, Hocquenghem (BCH) error correction algorithm with simplified syndrome table to achieve an efficient reconciliation protocol which can handle a higher quantum bit error rate and outputs a common key with zero error probability. The proposed protocol efficient in removing errors such that it can remove all errors even if QBER is 60%. Assuming the post processing channel is an authenticated binary symmetric channel (BSC).


Author(s):  
Hiền

Phân phối khoá lượng tử QKD (Quantum Key Distribution) là giải pháp có khả năng đảm an ninh vô điều kiện nhờ áp dụng luật cơ lượng tử để phân phối khóa an toàn giữa hai bên hợp pháp với sự hiện diện của kẻ nghe lén. Sử dụng vệ tinh để phân phối khóa lượng tử tới các trạm mặt đất qua kênh quang không gian tự do FSO (Free Space Optic) là giải pháp hứa hẹn tạo ra một mạng QKD phạm vi toàn cầu. Tuy nhiên, do ảnh hưởng của kênh FSO, đặc biệt là nhiễu loạn khí quyển, tốc độ truyền khóa bí mật SKR (Secret Key Rate) của các hệ thống QKD hiện tại bị hạn chế. Do đó, nghiên cứu này đề xuất mô hình hệ thống QKD đa kênh dựa trên ghép kênh phân chia theo bước sóng WDM (Wavelength Division Multiplexing) và ghép kênh sóng mang phụ SCM (Sub Carrier Multiplexing) nhằm tăng SKR. Sử dụng phương pháp phân tích lý thuyết với các công cụ giải tích và xác suất, nhóm tác giả đã xây dựng các công thức tính toán SKR và tỉ lệ lỗi bit lượng tử của hệ thống đề xuất. Kết quả khảo sát hiệu năng cho thấy, hệ thống QKD đa kênh cho phép cải thiện SKR so với hệ thống đơn kênh trong khi vẫn đảm bảo yêu cầu về QBER (Quantum Bit Error Rate).


2008 ◽  
Vol 06 (01) ◽  
pp. 1-127 ◽  
Author(s):  
RENATO RENNER

Quantum Information Theory is an area of physics which studies both fundamental and applied issues in quantum mechanics from an information-theoretical viewpoint. The underlying techniques are, however, often restricted to the analysis of systems which satisfy a certain independence condition. For example, it is assumed that an experiment can be repeated independently many times or that a large physical system consists of many virtually independent parts. Unfortunately, such assumptions are not always justified. This is particularly the case for practical applications — e.g. in quantum cryptography — where parts of a system might have an arbitrary and unknown behavior. We propose an approach which allows us to study general physical systems for which the above mentioned independence condition does not necessarily hold. It is based on an extension of various information-theoretical notions. For example, we introduce new uncertainty measures, called smooth min- and max-entropy, which are generalizations of the von Neumann entropy. Furthermore, we develop a quantum version of de Finetti's representation theorem, as described below. Consider a physical system consisting of n parts. These might, for instance, be the outcomes of n runs of a physical experiment. Moreover, we assume that the joint state of this n-partite system can be extended to an (n + k)-partite state which is symmetric under permutations of its parts (for some k ≫ 1). The de Finetti representation theorem then says that the original n-partite state is, in a certain sense, close to a mixture of product states. Independence thus follows (approximatively) from a symmetry condition. This symmetry condition can easily be met in many natural situations. For example, it holds for the joint state of n parts, which are chosen at random from an arbitrary (n + k)-partite system. As an application of these techniques, we prove the security of quantum key distribution (QKD), i.e. secret key agreement by communication over a quantum channel. In particular, we show that, in order to analyze QKD protocols, it is generally sufficient to consider so-called collective attacks, where the adversary is restricted to applying the same operation to each particle sent over the quantum channel separately. The proof is generic and thus applies to known protocols such as BB84 and B92 (where better bounds on the secret-key rate and on the the maximum tolerated noise level of the quantum channel are obtained) as well as to continuous variable schemes (where no full security proof has been known). Furthermore, the security holds with respect to a strong so-called universally composable definition. This implies that the keys generated by a QKD protocol can safely be used in any application, e.g. for one-time pad encryption — which, remarkably, is not the case for most standard definitions.


2007 ◽  
Vol 17 (03) ◽  
pp. 323-335 ◽  
Author(s):  
NAYA NAGY ◽  
SELIM G. AKL

The aim of quantum key distribution protocols is to establish a secret key among two parties with high security confidence. Such algorithms generally require a quantum channel and an authenticated classical channel. This paper presents a totally new perception of communication in such protocols. The quantum communication alone satisfies all needs of array communication between the two parties. Even so, the quantum communication channel does not need to be protected or authenticated whatsoever. As such, our algorithm is a purely quantum key distribution algorithm. The only certain identification of the two parties is through public keys.


2005 ◽  
Vol 12 (17) ◽  
Author(s):  
Ivan B. Damgård ◽  
Thomas B. Pedersen ◽  
Louis Salvail

Assuming an insecure quantum channel and an authenticated classical channel, we propose an unconditionally secure scheme for encrypting classical messages under a shared key, where attempts to eavesdrop the ciphertext can be detected. If no eavesdropping is detected, we can securely re-use the entire key for encrypting new messages. If eavesdropping is detected, we must discard a number of key bits corresponding to the length of the message, but can re-use almost all of the rest. We show this is essentially optimal. Thus, provided the adversary does not interfere (too much) with the quantum channel, we can securely send an arbitrary number of message bits, independently of the length of the initial key. Moreover, the key-recycling mechanism only requires one-bit feedback. While ordinary quantum key distribution with a classical one time pad could be used instead to obtain a similar functionality, this would need more rounds of interaction and more communication.


2009 ◽  
Vol 07 (01) ◽  
pp. 297-306 ◽  
Author(s):  
Z. SHADMAN ◽  
H. KAMPERMANN ◽  
T. MEYER ◽  
D. BRUß

We study eavesdropping in quantum key distribution with the six state protocol, when the signal states are mixed with white noise. This situation may arise either when Alice deliberately adds noise to the signal states before they leave her lab, or in a realistic scenario where Eve cannot replace the noisy quantum channel by a noiseless one. We find Eve's optimal mutual information with Alice, for individual attacks, as a function of the qubit error rate. Our result is that added quantum noise reduces Eve's mutual information more than Bob's.


Author(s):  
Hiroo Azuma ◽  
Masashi Ban

We investigate the security against the intercept/resend and translucent attacks on the quantum key distribution protocol based on the pre- and post-selection effect. In 2001, Bub proposed the quantum cryptography scheme, which was an application of the so-called mean king’s problem. We evaluate a probability that legitimate users cannot detect eavesdropper’s malicious acts for Bub’s protocol. We also estimate a probability that the eavesdropper guesses right at the random secret key one of the legitimate users tries to share with the other one. From rigorous mathematical and numerical analyses, we conclude that Bub’s protocol is weaker than the Bennett–Brassard protocol of 1984 (BB84) against both the intercept/resend and translucent attacks. Because Bub’s protocol uses a two-way quantum channel, the analyses of its security are tough to accomplish. We refer to their technical points accurately in the current paper. For example, we impose some constraints upon the eavesdropper’s strategies in order to let their degrees of freedom be small.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Laszlo Gyongyosi ◽  
Sandor Imre

Abstract A multicarrier continuous-variable quantum key distribution (CVQKD) protocol uses Gaussian subcarrier quantum continuous variables (CVs) for the transmission. Here, we define an iterative error-minimizing secret key adaption method for multicarrier CVQKD. The proposed method allows for the parties to reach a given target secret key rate with minimized error rate through the Gaussian sub-channels by a sub-channel adaption procedure. The adaption algorithm iteratively determines the optimal transmit conditions to achieve the target secret key rate and the minimal error rate over the sub-channels. The solution requires no complex calculations or computational tools, allowing for easy implementation for experimental scenarios.


Sign in / Sign up

Export Citation Format

Share Document