AUTHENTICATED QUANTUM KEY DISTRIBUTION WITHOUT CLASSICAL COMMUNICATION

2007 ◽  
Vol 17 (03) ◽  
pp. 323-335 ◽  
Author(s):  
NAYA NAGY ◽  
SELIM G. AKL

The aim of quantum key distribution protocols is to establish a secret key among two parties with high security confidence. Such algorithms generally require a quantum channel and an authenticated classical channel. This paper presents a totally new perception of communication in such protocols. The quantum communication alone satisfies all needs of array communication between the two parties. Even so, the quantum communication channel does not need to be protected or authenticated whatsoever. As such, our algorithm is a purely quantum key distribution algorithm. The only certain identification of the two parties is through public keys.

2011 ◽  
Vol 25 (08) ◽  
pp. 1061-1067
Author(s):  
WEI YANG ◽  
LIUSHENG HUANG ◽  
FANG SONG ◽  
QIYAN WANG

Secure key distribution is impossible in pure classical environment. Unconditional secure key distribution is available when quantum means are introduced, assisted by a classical communication channel. What is possible when a quantum key distribution scheme is without classical communication? We present a general model with this constraint and show that quantum key distribution without classical eavesdropping check is in principle impossible. For an adversary can always succeed in obtaining the secret key via a special case of man-in-the-middle attack, namely intercept-and-forward attack without any risk of being captured.


2019 ◽  
Vol 9 (1) ◽  
pp. 50-58 ◽  
Author(s):  
A. P. Pljonkin

A typical structure of an auto-compensation system for quantum key distribution is given. The principle of operation of a fiber-optic system for the distribution of quantum keys with phase coding of photon states is described. The operation of the system in the synchronization mode and the formation of quantum keys was investigated. The process of detecting a time interval with an optical synchronization pulse is analyzed. The structural scheme of the experimental stand of the quantum-cryptographic network is given. Data are obtained that attest to the presence of a multiphoton signal during the transmission of sync pulses from the transceiver station to the coding and backward direction. The results of experimental studies are presented, which prove the existence of a vulnerability in the process of synchronization of the quantum key distribution system. It is shown that the use of a multiphoton optical pulse as a sync signal makes it possible for an attacker to unauthorized access to a quantum communication channel. The experimental results show that tapping a portion of the optical power from the quantum communication channel during the synchronization process allows an attacker to remain unnoticed while the quantum protocol is operating. Experimentally proved the possibility of introducing malfunctions into the operation of the quantum communication system at the stage of key formation, while remaining invisible for control means.


Author(s):  
A. P. Pljonkin

A typical structure of an auto-compensation system for quantum key distribution is given. The principle of operation of a fiber-optic system for the distribution of quantum keys with phase coding of photon states is described. The operation of the system in the synchronization mode and the formation of quantum keys was investigated. The process of detecting a time interval with an optical synchronization pulse is analyzed. The structural scheme of the experimental stand of the quantum-cryptographic network is given. Data are obtained that attest to the presence of a multiphoton signal during the transmission of sync pulses from the transceiver station to the coding and backward direction. The results of experimental studies are presented, which prove the existence of a vulnerability in the process of synchronization of the quantum key distribution system. It is shown that the use of a multiphoton optical pulse as a sync signal makes it possible for an attacker to unauthorized access to a quantum communication channel. The experimental results show that tapping a portion of the optical power from the quantum communication channel during the synchronization process allows an attacker to remain unnoticed while the quantum protocol is operating. Experimentally proved the possibility of introducing malfunctions into the operation of the quantum communication system at the stage of key formation, while remaining invisible for control means.


2021 ◽  
pp. 2150156
Author(s):  
Tianqi Dou ◽  
Hongwei Liu ◽  
Jipeng Wang ◽  
Zhenhua Li ◽  
Wenxiu Qu ◽  
...  

Quantum communication plays an important role in quantum information science due to its unconditional security. In practical implementations, the users of each communication vary with the transmitted information, and hence not all users are required to participate in each communication round. Therefore, improving the flexibility and efficiency of the actual communication process is highly demanded. Here, we propose a theoretical quantum communication scheme that realizes secret key distribution for both the two-party quantum key distribution (QKD) and multi-party quantum secret sharing (QSS) modes. The sender, Alice, can freely select one or more users to share keys among all users, and nonactive users will not participate in the process of secret key sharing. Numerical simulations show the superiority of the proposed scheme in transmission distance and secure key rate. Consequently, the proposed scheme is valuable for secure quantum communication network scenarios.


2011 ◽  
Vol 11 (11&12) ◽  
pp. 937-947
Author(s):  
Hong-Wei Li ◽  
Zhen-Qiang Yin ◽  
Shuang Wang ◽  
Wan-Su Bao ◽  
Guang-Can Guo ◽  
...  

In practical quantum key distribution system, the state preparation and measurement have state-dependent imperfections comparing with the ideal BB84 protocol. If the state-dependent imperfection can not be regarded as an unitary transformation, it should not be considered as part of quantum channel noise introduced by the eavesdropper, the commonly used secret key rate formula GLLP can not be applied correspondingly. In this paper, the unconditional security of quantum key distribution with state-dependent imperfections will be analyzed by estimating upper bound of the phase error rate in the quantum channel and the imperfect measurement. Interestingly, since Eve can not control all phase error in the quantum key distribution system, the final secret key rate under constant quantum bit error rate can be improved comparing with the perfect quantum key distribution protocol.


Author(s):  
Luis Adrián Lizama-Pérez ◽  
José Mauricio López-Romero

We present an error reconciliation method for Quantum Key Distribution (QKD) that corrects 100% of errors generated in regular binary frames transmitted over a noisy quantum channel regardless of the quantum channel error rate. In a previous investigation, we introduced a novel distillation QKD algorithm whose secret key rate descends linearly with respect to the channel error rate. Now, as the main achievement of this work, we demonstrate an improved algorithm capable of retaining almost all the secret information enclosed in the regular binary frames. Remarkably, this technique increases quadratically the secret key rate as a function of the double matching detection events and doubly quadratically in the number of the quantum pulses. Furthermore, this reconciliation method opens up the opportunity to use less attenuated quantum pulses, would allow greater QKD distances at drastically increased secret key rate. Since our method can be implemented as a software update, we hope that quantum key distribution technology would be fast deployed over global data networks in the quantum era.


Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 333 ◽  
Author(s):  
Xiaodong Wu ◽  
Yijun Wang ◽  
Qin Liao ◽  
Hai Zhong ◽  
Ying Guo

We propose a simultaneous classical communication and quantum key distribution (SCCQ) protocol based on plug-and-play configuration with an optical amplifier. Such a protocol could be attractive in practice since the single plug-and-play system is taken advantage of for multiple purposes. The plug-and-play scheme waives the necessity of using two independent frequency-locked laser sources to perform coherent detection, thus the phase noise existing in our protocol is small which can be tolerated by the SCCQ protocol. To further improve its capabilities, we place an optical amplifier inside Alice’s apparatus. Simulation results show that the modified protocol can well improve the secret key rate compared with the original protocol whether in asymptotic limit or finite-size regime.


2008 ◽  
Vol 06 (01) ◽  
pp. 1-127 ◽  
Author(s):  
RENATO RENNER

Quantum Information Theory is an area of physics which studies both fundamental and applied issues in quantum mechanics from an information-theoretical viewpoint. The underlying techniques are, however, often restricted to the analysis of systems which satisfy a certain independence condition. For example, it is assumed that an experiment can be repeated independently many times or that a large physical system consists of many virtually independent parts. Unfortunately, such assumptions are not always justified. This is particularly the case for practical applications — e.g. in quantum cryptography — where parts of a system might have an arbitrary and unknown behavior. We propose an approach which allows us to study general physical systems for which the above mentioned independence condition does not necessarily hold. It is based on an extension of various information-theoretical notions. For example, we introduce new uncertainty measures, called smooth min- and max-entropy, which are generalizations of the von Neumann entropy. Furthermore, we develop a quantum version of de Finetti's representation theorem, as described below. Consider a physical system consisting of n parts. These might, for instance, be the outcomes of n runs of a physical experiment. Moreover, we assume that the joint state of this n-partite system can be extended to an (n + k)-partite state which is symmetric under permutations of its parts (for some k ≫ 1). The de Finetti representation theorem then says that the original n-partite state is, in a certain sense, close to a mixture of product states. Independence thus follows (approximatively) from a symmetry condition. This symmetry condition can easily be met in many natural situations. For example, it holds for the joint state of n parts, which are chosen at random from an arbitrary (n + k)-partite system. As an application of these techniques, we prove the security of quantum key distribution (QKD), i.e. secret key agreement by communication over a quantum channel. In particular, we show that, in order to analyze QKD protocols, it is generally sufficient to consider so-called collective attacks, where the adversary is restricted to applying the same operation to each particle sent over the quantum channel separately. The proof is generic and thus applies to known protocols such as BB84 and B92 (where better bounds on the secret-key rate and on the the maximum tolerated noise level of the quantum channel are obtained) as well as to continuous variable schemes (where no full security proof has been known). Furthermore, the security holds with respect to a strong so-called universally composable definition. This implies that the keys generated by a QKD protocol can safely be used in any application, e.g. for one-time pad encryption — which, remarkably, is not the case for most standard definitions.


2017 ◽  
Vol 15 (06) ◽  
pp. 1750048
Author(s):  
Gerd Niestegge

A well-known feature of quantum mechanics is the secure exchange of secret bit strings which can then be used as keys to encrypt messages transmitted over any classical communication channel. It is demonstrated that this quantum key distribution allows a much more general and abstract access than commonly thought. The results include some generalizations of the Hilbert space version of quantum key distribution, but are based upon a general nonclassical extension of conditional probability. A special state-independent conditional probability is identified as origin of the superior security of quantum key distribution; this is a purely algebraic property of the quantum logic and represents the transition probability between the outcomes of two consecutive quantum measurements.


Sign in / Sign up

Export Citation Format

Share Document