HỆ THỐNG PHÂN PHỐI KHÓA LƯỢNG TỬ ĐA KÊNH TỪ VỆ TINH SỬ DỤNG SCM-WDM

Author(s):  
Hiền

Phân phối khoá lượng tử QKD (Quantum Key Distribution) là giải pháp có khả năng đảm an ninh vô điều kiện nhờ áp dụng luật cơ lượng tử để phân phối khóa an toàn giữa hai bên hợp pháp với sự hiện diện của kẻ nghe lén. Sử dụng vệ tinh để phân phối khóa lượng tử tới các trạm mặt đất qua kênh quang không gian tự do FSO (Free Space Optic) là giải pháp hứa hẹn tạo ra một mạng QKD phạm vi toàn cầu. Tuy nhiên, do ảnh hưởng của kênh FSO, đặc biệt là nhiễu loạn khí quyển, tốc độ truyền khóa bí mật SKR (Secret Key Rate) của các hệ thống QKD hiện tại bị hạn chế. Do đó, nghiên cứu này đề xuất mô hình hệ thống QKD đa kênh dựa trên ghép kênh phân chia theo bước sóng WDM (Wavelength Division Multiplexing) và ghép kênh sóng mang phụ SCM (Sub Carrier Multiplexing) nhằm tăng SKR. Sử dụng phương pháp phân tích lý thuyết với các công cụ giải tích và xác suất, nhóm tác giả đã xây dựng các công thức tính toán SKR và tỉ lệ lỗi bit lượng tử của hệ thống đề xuất. Kết quả khảo sát hiệu năng cho thấy, hệ thống QKD đa kênh cho phép cải thiện SKR so với hệ thống đơn kênh trong khi vẫn đảm bảo yêu cầu về QBER (Quantum Bit Error Rate).

2012 ◽  
pp. 13-19
Author(s):  
Riaz Ahmad Qamar ◽  
Mohd Aizaini Maarof ◽  
Subariah Ibrahim

A quantum key distribution protocol(QKD), known as BB84, was developed in 1984 by Charles Bennett and Gilles Brassard. The protocol works in two phases which are quantum state transmission and conventional post processing. In the first phase of BB84, raw key elements are distributed between two legitimate users by sending encoded photons through quantum channel whilst in the second phase, a common secret-key is obtained from correlated raw key elements by exchanging messages through a public channel e.g.; network or internet. The secret-key so obtained is used for cryptography purpose. Reconciliation is a compulsory part of post processing and hence of quantum key distribution protocol. The performance of a reconciliation protocol depends on the generation rate of common secret-key, number of bits disclosed and the error probability in common secrete-key. These characteristics of a protocol can be achieved by using a less interactive reconciliation protocol which can handle a higher initial quantum bit error rate (QBER). In this paper, we use a simple Bose, Chaudhuri, Hocquenghem (BCH) error correction algorithm with simplified syndrome table to achieve an efficient reconciliation protocol which can handle a higher quantum bit error rate and outputs a common key with zero error probability. The proposed protocol efficient in removing errors such that it can remove all errors even if QBER is 60%. Assuming the post processing channel is an authenticated binary symmetric channel (BSC).


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
M. Avesani ◽  
L. Calderaro ◽  
M. Schiavon ◽  
A. Stanco ◽  
C. Agnesi ◽  
...  

AbstractThe future envisaged global-scale quantum-communication network will comprise various nodes interconnected via optical fibers or free-space channels, depending on the link distance. The free-space segment of such a network should guarantee certain key requirements, such as daytime operation and the compatibility with the complementary telecom-based fiber infrastructure. In addition, space-to-ground links will require the capability of designing light and compact quantum devices to be placed in orbit. For these reasons, investigating available solutions matching all the above requirements is still necessary. Here we present a full prototype for daylight quantum key distribution at 1550 nm exploiting an integrated silicon-photonics chip as state encoder. We tested our prototype in the urban area of Padua (Italy) over a 145 m-long free-space link, obtaining a quantum bit error rate around 0.5% and an averaged secret key rate of 30 kbps during a whole sunny day (from 11:00 to 20:00). The developed chip represents a cost-effective solution for portable free-space transmitters and a promising resource to design quantum optical payloads for future satellite missions.


Entropy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 1393
Author(s):  
Andrei Gaidash ◽  
Anton Kozubov ◽  
Svetlana Medvedeva ◽  
George Miroshnichenko

In this paper, we consider the influence of a divergence of polarization of a quantum signal transmitted through an optical fiber channel on the quantum bit error rate of the subcarrier wave quantum key distribution protocol. Firstly, we investigate the dependence of the optical power of the signal on the modulation indices’ difference after the second phase modulation of the signal. Then we consider the Liouville equation with regard to relaxation in order to develop expressions of the dynamics of the Stokes parameters. As a result, we propose a model that describes quantum bit error rate for the subcarrier wave quantum key distribution depending on the characteristics of the optical fiber. Finally, we propose several methods for minimizing quantum bit error rate.


2011 ◽  
Vol 11 (11&12) ◽  
pp. 937-947
Author(s):  
Hong-Wei Li ◽  
Zhen-Qiang Yin ◽  
Shuang Wang ◽  
Wan-Su Bao ◽  
Guang-Can Guo ◽  
...  

In practical quantum key distribution system, the state preparation and measurement have state-dependent imperfections comparing with the ideal BB84 protocol. If the state-dependent imperfection can not be regarded as an unitary transformation, it should not be considered as part of quantum channel noise introduced by the eavesdropper, the commonly used secret key rate formula GLLP can not be applied correspondingly. In this paper, the unconditional security of quantum key distribution with state-dependent imperfections will be analyzed by estimating upper bound of the phase error rate in the quantum channel and the imperfect measurement. Interestingly, since Eve can not control all phase error in the quantum key distribution system, the final secret key rate under constant quantum bit error rate can be improved comparing with the perfect quantum key distribution protocol.


Author(s):  
Catalin Anghel

This paper presents the development, comparison and analysis of several implementations of the B92 Quantum Key Distribution (QKD) protocol. In order to achieve this objective a prototype which consists of traditional (non-quantum) simulators was created, one for B92 protocol, one for B92 protocol with eavesdropper and one for B92 protocol with Quantum Bit Travel Time (QBTT) eavesdropper detection method. The principles of quantum mechanics were studied, as a foundation of quantum cryptography, for the realization of simulation programs that were written in C ++, focusing mainly on the B92 protocol and QBTT eavesdropper detection method. We compared the Quantum Bit Error Rate (QBER) for implementation of B92 protocol without eavesdropper, B92 protocol with eavesdropper and B92 protocol with QBTT eavesdropper detection method and found that QBTT eavesdropper detection method significantly reduces the QBER from the final key.


2005 ◽  
Vol 03 (01) ◽  
pp. 141-146 ◽  
Author(s):  
FABIO A. BOVINO ◽  
PIETRO VARISCO ◽  
ANNA MARTINOLI ◽  
PAOLO DE NICOLO ◽  
SANDRA BRUZZO ◽  
...  

We present the architecture and recent experimental results for a quantum key distribution system realized at Elsag spa Quantum Optics Laboratory with a key distribution rate suitable for practical industrial applications. The current system can reliably distribute secure cryptographic keys at a rate of 1,500 bit per second and higher at a few hundred meters, with a quantum bit error rate lower than 1%.


Sign in / Sign up

Export Citation Format

Share Document