scholarly journals Nonlinear Generalisation of Quantum Mechanics

Author(s):  
Alireza Jamali

It is known since Madelung that the Schrödinger equation can be thought of as governing the evolution of an incompressible fluid, but the current theory fails to mathematically express this incompressibility in terms of the wavefunction without facing problem. In this paper after showing that the current definition of quantum-mechanical momentum as a linear operator is neither the most general nor a necessary result of the de Broglie hypothesis, a new definition is proposed that can yield both a meaningful mathematical condition for the incompressibility of the Madelung fluid, and nonlinear generalisations of Schrödinger and Klein-Gordon equations. The derived equations satisfy all conditions that are expected from a proper generalisation: simplification to their linear counterparts by a well-defined dynamical condition; Galilean and Lorentz invariance (respectively); and signifying only rays in the Hilbert space.

2021 ◽  
Author(s):  
Alireza Jamali

A new definition for quantum-mechanical momentum is proposed which yields novel nonlinear generalisations of Schrödinger and Klein-Gordon equations. It is thence argued that the superposition and uncertainty principles as they stand cannot have general validity.


Author(s):  
Alireza Jamali

A new definition for quantum-mechanical momentum is proposed which yields novel nonlinear generalisations of Schrödinger and Klein-Gordon equations. It is thence argued that the superposition and uncertainty principles as they stand cannot have general validity.


2011 ◽  
Vol 20 (05) ◽  
pp. 729-743 ◽  
Author(s):  
JOÃO PAULO M. PITELLI ◽  
PATRICIO S. LETELIER

We review the mathematical framework necessary to understand the physical content of quantum singularities in static spacetimes. We present many examples of classical singular spacetimes and study their singularities by using wave packets satisfying Klein–Gordon and Dirac equations. We show that in many cases the classical singularities are excluded when tested by quantum particles but unfortunately there are other cases where the singularities remain from the quantum mechanical point of view. When it is possible we also find, for spacetimes where quantum mechanics does not exclude the singularities, the boundary conditions necessary to turn the spatial portion of the wave operator to be self-adjoint and emphasize their importance to the interpretation of quantum singularities.


Author(s):  
Jeffrey A. Barrett

Moving to more subtle experiments, we consider how the standard formulation of quantum mechanics predicts and explains interference phenomena. Tracking the conditions under which one observes interference phenomena leads to the notion of quantum decoherence. We see why one must sharply distinguish between collapse phenomena and decoherence phenomena on the standard formulation of quantum mechanics. While collapses explain determinate measurement records, environmental decoherence just produces more complex, entangled states where the physical systems involved lack ordinary physical properties. We characterize the quantum-mechanical wave function as both an element of a Hilbert space and a complex-valued function over a configuration space. We also discuss how the wave function is interpreted in the standard theory.


The action of an arbitrary (but finite or compact) group on an arbitrary Hilbert space is studied. The application of group theory to physical calculations is often based on the Wigner-Eckart theorem, and one of the aims is to lead up to a general proof of this theorem. The group’s action gives irreducible ket-vector representation spaces, products of which lead to a definition of coupling (Wigner, or Clebsch-Gordan) coefficients and jm and j symbols. The properties of these objects are studied in detail, beginning with properties that are independent of the basis chosen for the representation spaces. We then explore some of the consequences of choosing bases by using the action of a subgroup. This leads to the Racah factorization lemma and the definition of jm factors, also a general statement of Racah’s reciprocity. In the third part, we add to these ideas, some properties of the space of all linear operators taking the Hilbert space to itself. This leads to a proof of the Wigner—Eckart theorem which is both succinct and in the language of quantum mechanics.


1993 ◽  
Vol 08 (26) ◽  
pp. 4679-4729 ◽  
Author(s):  
GAETANO FIORE

We show that the isotropic harmonic oscillator in the ordinary Euclidean space RN (N≥3) admits a natural q-deformation into a new quantum-mechanical model having a q-deformed symmetry (in the sense of quantum groups), SO q(N, R). The q-deformation is the consequence of replacing RN by [Formula: see text] (the corresponding quantum space). This provides an example of quantum mechanics on a noncommutative geometrical space. To reach the goal, we also have to deal with a sensible definition of integration over [Formula: see text], which we use for the definition of the scalar product of states.


1978 ◽  
Vol 10 (4) ◽  
pp. 725-729 ◽  
Author(s):  
J. V. Corbett

Quantum mechanics is usually described in the terminology of probability theory even though the properties of the probability spaces associated with it are fundamentally different from the standard ones of probability theory. For example, Kolmogorov's axioms are not general enough to encompass the non-commutative situations that arise in quantum theory. There have been many attempts to generalise these axioms to meet the needs of quantum mechanics. The focus of these attempts has been the observation, first made by Birkhoff and von Neumann (1936), that the propositions associated with a quantum-mechanical system do not form a Boolean σ-algebra. There is almost universal agreement that the probability space associated with a quantum-mechanical system is given by the set of subspaces of a separable Hilbert space, but there is disagreement over the algebraic structure that this set represents. In the most popular model for the probability space of quantum mechanics the propositions are assumed to form an orthocomplemented lattice (Mackey (1963), Jauch (1968)). The fundamental concept here is that of a partial order, that is a binary relation that is reflexive and transitive but not symmetric. The partial order is interpreted as embodying the logical concept of implication in the set of propositions associated with the physical system. Although this model provides an acceptable mathematical expression of the probabilistic structure of quantum mechanics in that the subspaces of a separable Hilbert space give a representation of an ortho-complemented lattice, it has several deficiencies which will be discussed later.


2005 ◽  
Vol 70 (5) ◽  
pp. 621-637 ◽  
Author(s):  
Lubomír Skála ◽  
Vojtěch Kapsa

Probabilistic description of results of measurements and its consequences for understanding quantum mechanics are discussed. It is shown that the basic mathematical structure of quantum mechanics like the probability amplitudes, Born rule, probability density current, commutation and uncertainty relations, momentum operator, rules for including scalar and vector potentials and antiparticles can be derived from the definition of the mean values of powers of space coordinates and time. Equations of motion of quantum mechanics, the Klein-Gordon equation, Schrödinger equation and Dirac equation are obtained from the requirement of the relativistic invariance of the theory. The limit case of localized probability densities leads to the Hamilton-Jacobi equation of classical mechanics. Many-particle systems are also discussed.


Author(s):  
Yehuda Roth

n our previous paper, we showed that the so-called quantum entanglement also exists in classical mechanics. The inability to measure this classical entanglement was rationalized with the definition of a classical observer which collapses all entanglement into distinguishable states. It was shown that evidence for this primary coherence is Newton’s third law. However, in reformulating a "classical entanglement theory" we assumed the existence of Newton’s second law as an operator form where a force operator was introduced through a Hilbert space of force states. In this paper, we derive all related physical quantities and laws from basic quantum principles. We not only define a force operator but also derive the classical mechanic's laws and prove the necessity of entanglement to obtain Newton’s third law.


Sign in / Sign up

Export Citation Format

Share Document