scholarly journals Geometric Algebra Framework Applied to Circuits with Non-sinusoidal Voltages and Currents

Author(s):  
Jan Cieśliński ◽  
Cezary Walczyk

We apply a well known technique of theoretical physics, known as Geometric Algebra or Clifford algebra, to linear electrical circuits with non-sinusoidal voltages and currents. We rederive from the first principles the Geometric Algebra approach to the apparent power decomposition. The important new point consists in a choice of a natural convenient basis in the Clifford vector space which simplifies considerably the presentation. Thus we are able to derive a number of general results which are missing in the former papers. In particular, a natural correspondence with the Current Physical Components approach is shown.

2020 ◽  
Vol 17 (3) ◽  
pp. 365-371
Author(s):  
Anatoliy Pogorui ◽  
Tamila Kolomiiets

This paper deals with studying some properties of a monogenic function defined on a vector space with values in the Clifford algebra generated by the space. We provide some expansions of a monogenic function and consider its application to study solutions of second-order partial differential equations.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1259
Author(s):  
Francisco G. Montoya ◽  
Raúl Baños ◽  
Alfredo Alcayde ◽  
Francisco Manuel Arrabal-Campos ◽  
Javier Roldán Roldán Pérez

This paper presents a new framework based on geometric algebra (GA) to solve and analyse three-phase balanced electrical circuits under sinusoidal and non-sinusoidal conditions. The proposed approach is an exploratory application of the geometric algebra power theory (GAPoT) to multiple-phase systems. A definition of geometric apparent power for three-phase systems, that complies with the energy conservation principle, is also introduced. Power calculations are performed in a multi-dimensional Euclidean space where cross effects between voltage and current harmonics are taken into consideration. By using the proposed framework, the current can be easily geometrically decomposed into active- and non-active components for current compensation purposes. The paper includes detailed examples in which electrical circuits are solved and the results are analysed. This work is a first step towards a more advanced polyphase proposal that can be applied to systems under real operation conditions, where unbalance and asymmetry is considered.


Author(s):  
Zhidong Zhang ◽  
Osamu Suzuki ◽  
Norman H. March

2017 ◽  
Vol 41 (11) ◽  
pp. 4074-4087 ◽  
Author(s):  
Shuai Yuan ◽  
Shuai Zhu ◽  
Dong-Shuang Li ◽  
Wen Luo ◽  
Zhao-Yuan Yu ◽  
...  

1992 ◽  
Vol 14 (2) ◽  
pp. 13-16
Author(s):  
Bui Huu Dan

The computation procedure of the slip model of polycrystalline plasticity was extended for the most general cases, when the stress and strain state are expressed in the five-dimension vector space this extent ion is based on the know ledges of Clifford algebra in the many-dimension (more than 3) vector space. The results would be reduced into the old results given in the more simple cases.


2015 ◽  
Vol 55 (2) ◽  
Author(s):  
Adolfas Dargys

To have a closed system, the Maxwell electromagnetic equations should be supplemented by constitutive relations which describe medium properties and connect primary fields (E, B) with secondary ones (D, H). J.W. Gibbs and O. Heaviside introduced the basis vectors {i, j, k} to represent the fields and constitutive relations in the three-dimensional vectorial space. In this paper the constitutive relations are presented in a form of Cl3,0 algebra which describes the vector space by three basis vectors {σ1, σ2, σ3} that satisfy Pauli commutation relations. It is shown that the classification of electromagnetic wave propagation phenomena with the help of constitutive relations in this case comes from the structure of Cl3,0 itself. Concrete expressions for classical constitutive relations are presented including electromagnetic wave propagation in a moving dielectric.


Author(s):  
Pierre-Philippe Dechant

E 8 is prominent in mathematics and theoretical physics, and is generally viewed as an exceptional symmetry in an eight-dimensional (8D) space very different from the space we inhabit; for instance, the Lie group E 8 features heavily in 10D superstring theory. Contrary to that point of view, here we show that the E 8 root system can in fact be constructed from the icosahedron alone and can thus be viewed purely in terms of 3D geometry. The 240 roots of E 8 arise in the 8D Clifford algebra of 3D space as a double cover of the 120 elements of the icosahedral group, generated by the root system H 3 . As a by-product, by restricting to even products of root vectors (spinors) in the 4D even subalgebra of the Clifford algebra, one can show that each 3D root system induces a root system in 4D, which turn out to also be exactly the exceptional 4D root systems. The spinorial point of view explains their existence as well as their unusual automorphism groups. This spinorial approach thus in fact allows one to construct all exceptional root systems within the geometry of three dimensions, which opens up a novel interpretation of these phenomena in terms of spinorial geometry.


Sign in / Sign up

Export Citation Format

Share Document