scholarly journals Enhancing Handover for 5G Mobile Networks using Jump Markov Linear System and Deep Reinforcement Learning

Author(s):  
Masoto Chiputa ◽  
Minglong Zhang ◽  
G. G. Md. Nawaz Ali ◽  
Peter Han Joo Chong ◽  
Hakilo Sabit ◽  
...  

The fifth Generation (5G) mobile networks use millimeter Waves (mmWaves) to offer giga bit data rates. However, unlike microwaves, mmWave links are prone to user and topographic dynamics. They easily get blocked and end up forming irregular cell patterns for 5G. This in turn cause too early, too late, or wrong handoffs (HOs). To mitigate HO challenges, sustain connectivity and avert unnecessary HO, we propose a HO scheme based on Jump Markov Linear System (JMLS) and Deep Reinforcement Learning (DRL). JMLS is widely known to account for abrupt changes in system dynamics. DRL likewise emerges as an artificial intelligence technique for learning highly dimensional and time-varying behaviors. We combine the two techniques to account for time-varying, abrupt, and irregular changes in mmWave link behaviour by predicting likely deterioration patterns of target links. The prediction is optimized by meta training techniques that also reduces training sample size. Thus, the JMLS-DRL platform formulates intelligent and versatile HO policies for 5G. Results show our proposed prediction scheme about target link behavior post HO to be highly reliable. The scheme also averts unnecessary HOs thus ably supports longer dew time.

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Jack Y. Araz ◽  
Michael Spannowsky

Abstract Ensemble learning is a technique where multiple component learners are combined through a protocol. We propose an Ensemble Neural Network (ENN) that uses the combined latent-feature space of multiple neural network classifiers to improve the representation of the network hypothesis. We apply this approach to construct an ENN from Convolutional and Recurrent Neural Networks to discriminate top-quark jets from QCD jets. Such ENN provides the flexibility to improve the classification beyond simple prediction combining methods by linking different sources of error correlations, hence improving the representation between data and hypothesis. In combination with Bayesian techniques, we show that it can reduce epistemic uncertainties and the entropy of the hypothesis by simultaneously exploiting various kinematic correlations of the system, which also makes the network less susceptible to a limitation in training sample size.


2017 ◽  
Vol 25 (0) ◽  
pp. 153-163 ◽  
Author(s):  
Akihiro Nakao ◽  
Ping Du ◽  
Yoshiaki Kiriha ◽  
Fabrizio Granelli ◽  
Anteneh Atumo Gebremariam ◽  
...  

2021 ◽  
Author(s):  
Nora A. Ali ◽  
Magdy El-Soudani ◽  
Hany M. ElSayed ◽  
Hebat-Allah M. Mourad ◽  
Hassanein H. Amer

2021 ◽  
Vol 66 (18) ◽  
pp. 185012
Author(s):  
Yingtao Fang ◽  
Jiazhou Wang ◽  
Xiaomin Ou ◽  
Hongmei Ying ◽  
Chaosu Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document