scholarly journals TNFR2 Antagonist and Agonist: A Potential Therapeutics in Cancer Immunotherapy

Author(s):  
Sameer Quazi

Tumor necrosis factor receptor 2 or TNFR2 is considered as an appealing target protein due its limited frequency to Tregs which are highly immunosuppressive and its presence on human malignancies. Numerous studies have revealed that TNFR2 is primarily found on MDSCs (myeloid derived suppressor cells) and CD+Foxp3+ regulatory T cell (Tregs). It has a great importance in the proliferation and functional activity of Tregs and MDSCs. To treat malignancies and diseases like autoimmune disorder, the suppressor activity of TNFR2 must be eliminated by downregulation or upregulation. Therefore, at the molecular level, advances in comprehension of TNFR2's complex structure and its binding to TNF have opened the door to structure-guided drug development. Two key obstacles of cancer treatment are the dearth of Treg-specific inhibitors and the lack of widely applicable ways to directly target tumors via frequently expressed surface oncogenes. Many researchers have discovered potential antagonist and agonist of TNFR2 which were successful in the inhibition of Tregs proliferation, reduction of soluble TNFR2 secretion from normal cells and in the expansion of T effector cells. The representation of the data in the following review article elucidates the clinically administrated TNFR2 antagonist and agonist in the treatment of cancers.

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Dawei Cui ◽  
Yan Lv ◽  
Xinwang Yuan ◽  
Guoxiang Ruan ◽  
Yu Zhang ◽  
...  

Background. OX40, which is also known as tumor necrosis factor receptor superfamily member 4 (TNFRSF4), and its ligand (OX40L) play a critical role in the pathogenesis of autoimmune diseases. Immune thrombocytopenia (ITP), a hemorrhagic autoimmune disorder, is characterized by low platelet counts that are predominantly caused by antiplatelet autoantibodies. In this study, we firstly investigated the clinical significance of OX40 and OX40L expression in the pathogenesis of ITP in patients. Methods. Fifty-four newly diagnosed ITP patients and 24 healthy controls (HCs) were enrolled in this study. The percentage of OX40+CD4+T cells among CD4+T cells was analyzed by flow cytometry, and the expression levels of OX40 and OX40L mRNA were analyzed by quantitative real-time PCR. Plasma soluble OX40L (sOX40L) levels were analyzed by ELISA, and plasma levels of antiplatelet autoantibodies were analyzed by a solid-phase technique. Results. Compared with HCs, the frequencies of OX40+CD4+T cells were significantly increased in ITP patients, particularly in patients with positive antiplatelet autoantibodies compared to those with negative antiplatelet autoantibodies. The elevated frequencies of OX40+CD4+T cells were negatively correlated with low platelet counts in patients with positive antiplatelet autoantibodies. Plasma sOX40L levels in ITP patients were significantly greater than those in HCs and increased in patients with positive antiplatelet autoantibodies compared to those with negative antiplatelet autoantibodies. Plasma sOX40L levels were negatively correlated with low platelet counts in patients with positive antiplatelet autoantibodies. Additionally, the mRNA expression levels of OX40 and OX40L in PBMCs from ITP patients were also notably greater than those from HCs, and the expression levels of OX40 and OX40L were significantly different in ITP patients with positive and negative antiplatelet autoantibodies. Conclusion. These data indicated that increased expression levels of OX40 and OX40L were involved in the pathogenesis of ITP, and OX40 and OX40L may be valuable therapeutic targets for ITP.


2004 ◽  
Vol 199 (11) ◽  
pp. 1479-1489 ◽  
Author(s):  
Ann E. Herman ◽  
Gordon J. Freeman ◽  
Diane Mathis ◽  
Christophe Benoist

CD4+CD25+ T regulatory cells (Tregs) prevent autoimmune disease, yet little is known about precisely where they exert their influence naturally in a spontaneous autoimmune disorder. Here, we report that Tregs and T effector cells (Teffs) coexist within the pancreatic lesion before type 1 diabetes onset. We find that BDC2.5 T cell receptor transgenic animals contain a small subset of FoxP3 positive CD4+CD25+CD69− cells in the pancreas, actively turning over, expressing the clonotypic receptor, and containing functional regulatory activity. Gene expression profiling confirms that the CD4+CD25+CD69− cells in pancreatic tissue express transcripts diagnostic of regulatory cells, but with significantly higher levels of interleukin 10 and inducible costimulator (ICOS) than their lymph node counterparts. Blockade of ICOS rapidly converts early insulitis to diabetes, which disrupts the balance of Teffs and Tregs and promotes a very broad shift in the expression of the T regulatory–specific profile. Thus, CD4+CD25+69− Tregs operate directly in the autoimmune lesion and are dependent on ICOS to keep it in a nondestructive state.


Circulation ◽  
1999 ◽  
Vol 99 (25) ◽  
pp. 3224-3226 ◽  
Author(s):  
Anita Deswal ◽  
Biykem Bozkurt ◽  
Yukihiro Seta ◽  
Semahat Parilti-Eiswirth ◽  
F. Ann Hayes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document