scholarly journals 3D Placement of a New Tethered UAV to UAV Relay System for Coverage Maximization

Author(s):  
Nour El-Din Safwat ◽  
Fatma Newagy ◽  
Ismail Hafez

In this paper, a new relay system that uses the UAV as a relay station between the tethered UAV and ground user (TU2U2G) is proposed. The TU2U2G system replaces the base station (BS) in the cellular system with a tethered UAV (TUAV). The TUAV is a UAV that receives power over a cable from a ground control station. It has advantages of high and variable altitude up to (100m) compared to BS. In addition, it overcomes the UAV drawback of the batteries' limited capacity. After that, a 3D placement Algorithm of the UAV as a relay station in the TU2U2G system is proposed. It is presented to maximize the coverage by jointly optimizing the transmitting power and relaying distance. The TU2U2G system shows better results than the traditional cellular system in terms of optimum UAV height, maximum coverage radius, and maximum distance between BS and UAV.

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1369
Author(s):  
Hyojun Lee ◽  
Jiyoung Yoon ◽  
Min-Seong Jang ◽  
Kyung-Joon Park

To perform advanced operations with unmanned aerial vehicles (UAVs), it is crucial that components other than the existing ones such as flight controller, network devices, and ground control station (GCS) are also used. The inevitable addition of hardware and software to accomplish UAV operations may lead to security vulnerabilities through various vectors. Hence, we propose a security framework in this study to improve the security of an unmanned aerial system (UAS). The proposed framework operates in the robot operating system (ROS) and is designed to focus on several perspectives, such as overhead arising from additional security elements and security issues essential for flight missions. The UAS is operated in a nonnative and native ROS environment. The performance of the proposed framework in both environments is verified through experiments.


2021 ◽  
Vol 13 (8) ◽  
pp. 188
Author(s):  
Marianna Di Gregorio ◽  
Marco Romano ◽  
Monica Sebillo ◽  
Giuliana Vitiello ◽  
Angela Vozella

The use of Unmanned Aerial Systems, commonly called drones, is growing enormously today. Applications that can benefit from the use of fleets of drones and a related human–machine interface are emerging to ensure better performance and reliability. In particular, a fleet of drones can become a valuable tool for monitoring a wide area and transmitting relevant information to the ground control station. We present a human–machine interface for a Ground Control Station used to remotely operate a fleet of drones, in a collaborative setting, by a team of multiple operators. In such a collaborative setting, a major interface design challenge has been to maximize the Team Situation Awareness, shifting the focus from the individual operator to the entire group decision-makers. We were especially interested in testing the hypothesis that shared displays may improve the team situation awareness and hence the overall performance. The experimental study we present shows that there is no difference in performance between shared and non-shared displays. However, in trials when unexpected events occurred, teams using shared displays-maintained good performance whereas in teams using non-shared displays performance reduced. In particular, in case of unexpected situations, operators are able to safely bring more drones home, maintaining a higher level of team situational awareness.


2018 ◽  
Vol 27 (12) ◽  
pp. 1850195
Author(s):  
P. Mangayarkarasi ◽  
J. Raja

Energy-efficient and reliable data transmission is a challenging task in wireless relay networks (WRNs). Energy efficiency in cellular networks has received significant attention because of the present need for reduced energy consumption, thereby maintaining the profitability of networks, which in turn makes these networks “greener”. The urban cell topography needs more energy to cover the total area of the cell. The base station does not cover the entire area in a given topography and adding more number of base stations is a cost prohibitive one. Energy-efficient relay placement model which calculates the maximum cell coverage is proposed in this work that covers all sectors and also an energy-efficient incremental redundancy-hybrid automatic repeat request (IR-HARQ) power allocation scheme to improve the reliability of the network by improving the overall network throughput is proposed. An IR-HARQ power allocation method maximizes the average incremental mutual information at each round, and its throughput quickly converges to the ergodic channel capacity as the number of retransmissions increases. Simulation results show that the proposed IR-HARQ power allocation achieves full channel capacity with average transmission delay and maintains good throughput under less power consumption. Also the impact of relaying performance on node distances between relay station and base station as well as between user and relay station and relay height for line of sight conditions are analyzed using full decode and forward (FDF) and partial decode and forward (PDF) relaying schemes. Compared to FDF scheme, PDF scheme provides better performance and allows more freedom in the relay placement for an increase in cell coverage.


2021 ◽  
Author(s):  
Taiwo Amida

The majority of Unmanned Aerial Vehicle (UAV) accidents can be directly related to human error. For this reason, standards and guidelines focusing on human factors have been published by various organizations such as Transport Canada, FAA, EASA, NASA and military agencies. The objective of this thesis is to present a methodology for designing a Ground Control Station (GCS) using available standards and guidelines for human factors. During the design process, a detailed analysis was performed using human factors methods to ensure all requirements were met; each phase of the design follows the guidelines presented in the compiled human factors standards and guidelines. The GCS interface was developed using advanced programming techniques and commercial off-the-shelf software. Moreover, an operator workload evaluation was carried out using NASA task load index for validation of design methodology. It was found that the applied methodology not only improved the pilot workload, but also ensured that all user and stakeholders’ requirements are met.


2016 ◽  
Vol 10 (1) ◽  
pp. 28-32
Author(s):  
Sławomir Romaniuk ◽  
Zdzisław Gosiewski ◽  
Leszek Ambroziak

Abstract In the paper implementation of a ground control station for UAV flight simulator is shown. The ground control station software is in cooperation with flight simulator, displaying various aircraft flight parameters. The software is programmed in C++ language and utilizes the windows forms for implementing graphical content. One of the main aims of the design of the application was to simplify the interface, simultaneously maintaining the functionality and the eligibility. A mission can be planned and monitored using the implemented map control supported by waypoint list.


2018 ◽  
Vol 6 (3) ◽  
pp. 147-159 ◽  
Author(s):  
Kazi Mahmud Hasan ◽  
S.H. Shah Newaz ◽  
Md. Shamim Ahsan

Purpose The purpose of this paper is to demonstrate the development of an aircraft-type autonomous portable drone suitable for surveillance and disaster management. The drone is capable of flying at a maximum speed of 76 km/h. This portable drone comprises five distinct parts those are easily installable within several minutes and can be fit in a small portable kit. The drone consists of a ballistic recovery system, allowing the drone landing vertically. The integrated high-definition camera sends real-time video stream of desired area to the ground control station. In addition, the drone is capable of carrying ~1.8 kg of payload. Design/methodology/approach In order to design and develop the portable drone, the authors sub-divided the research activities in six fundamental steps: survey of the current drone technologies, design the system architecture of the drone, simulation and modeling of various modules of the drone, development of various modules of the drone and their performance analysis, integration of various modules of the drone, and real-life performance analysis and finalization. Findings Experimental results: the cruise speed of the drone was in the range between 45 and 62 km/h. The drone was capable of landing vertically using the ballistic recovery system attached with it. On the contrary, the drone can transmit real-time video to the ground control station and, thus, suitable for surveillance. The audio system of the drone can be used for announcement of emergency messages. The drone can carry 1.8 kg of payload and can be used during disaster management. The drone parts are installed within 10 min and fit in a small carrying box. Practical implications The autonomous aircraft-type portable drone has a wide range of applications including surveillance, traffic jam monitoring and disaster management. Social implications The cost of the cost-effective drone is within $700 and creates opportunities for the deployment in the least developed countries. Originality/value The autonomous aircraft-type portable drone along with the ballistic recovery system were designed and developed by the authors using their won technology.


Sign in / Sign up

Export Citation Format

Share Document