scholarly journals Using a Toy Model to Improve the Quantization of Gravity and Field Theories

Author(s):  
John Klauder

A half-harmonic oscillator, which gets its name because the coordinate is strictly positive, has been quantized and determined that it was a physically correct quantization. This positive result was found using affine quantization (AQ). The main purpose of this paper is to compare results of this new quantization procedure with those of canonical quantization (CQ). Using Ashtekar-like classical variables and CQ, we quantize the same toy model. While these two quantizations lead to different results, they both would reduce to the same classical Hamiltonian if $\hbar\rightarrow0$. Since these two quantizations have differing results, only one of the quantizations can be physically correct. Two brief sections illustrate how AQ can correctly help quantum gravity and the quantization of most field theory problems.

2020 ◽  
Vol 35 (21) ◽  
pp. 2050114
Author(s):  
M. Bauer ◽  
C. A. Aguillón ◽  
G. E. García

The problem of time in the quantization of gravity arises from the fact that time in Schrödinger’s equation is a parameter. This sets time apart from the spatial coordinates, represented by operators in quantum mechanics (QM). Thus “time” in QM and “time” in general relativity (GR) are seen as mutually incompatible notions. The introduction of a dynamical time operator in relativistic quantum mechanics (RQM), that follows from the canonical quantization of special relativity and that in the Heisenberg picture is also a function of the parameter [Formula: see text] (identified as the laboratory time), prompts to examine whether it can help to solve the disfunction referred to above. In particular, its application to the conditional interpretation of time in the canonical quantization approach to quantum gravity is developed.


2011 ◽  
Vol 20 (supp01) ◽  
pp. 3-86 ◽  
Author(s):  
KAREL V. KUCHAŘ

In canonical quantization of gravity, the state functional does not seem to depend on time. This hampers the physical interpretation of quantum gravity. I critically examine ten major attempts to circumvent this problem and discuss their shortcomings.


2020 ◽  
pp. 237-288
Author(s):  
Giuseppe Mussardo

Chapter 7 covers the main reasons for adopting the methods of quantum field theory (QFT) to study the critical phenomena. It presents both the canonical quantization and the path integral formulation of the field theories as well as the analysis of the perturbation theory. The chapter also covers transfer matrix formalism and the Euclidean aspects of QFT, the field theory of the Ising model, Feynman diagrams, correlation functions in coordinate space, the Minkowski space and the Legendre transformation and vertex functions. Everything in this chapter will be needed sooner or later, since it highlights most of the relevant aspects of quantum field theory.


2006 ◽  
Vol 21 (02) ◽  
pp. 297-312 ◽  
Author(s):  
Y. JACK NG ◽  
H. VAN DAM

Neutrices are additive groups of negligible functions that do not contain any constants except 0. Their calculus was developed by van der Corput and Hadamard in connection with asymptotic series and divergent integrals. We apply neutrix calculus to quantum field theory, obtaining finite renormalizations in the loop calculations. For renormalizable quantum field theories, we recover all the usual physically observable results. One possible advantage of the neutrix framework is that effective field theories can be accommodated. Quantum gravity theories will then appear to be more manageable.


2003 ◽  
Vol 18 (26) ◽  
pp. 4869-4888 ◽  
Author(s):  
ASHOKE SEN

Recent analysis suggests that the classical dynamics of a tachyon on an unstable D-brane is described by a scalar Born–Infeld type action with a runaway potential. The classical configurations in this theory at late time are in one to one correspondence with the configuration of a system of noninteracting (incoherent), nonrotating dust. We discuss some aspects of canonical quantization of this field theory coupled to gravity, and explore, following an earlier work on this subject, the possibility of using the scalar field (tachyon) as the definition of time in quantum cosmology. At late "time" we can identify a subsector in which the scalar field decouples from gravity and we recover the usual Wheeler–de Witt equation of quantum gravity.


Galaxies ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 23 ◽  
Author(s):  
Manuel Asorey ◽  
Leslaw Rachwal ◽  
Ilya Shapiro

We analyze the unitarity properties of higher derivative quantum field theories which are free of ghosts and ultraviolet singularities. We point out that in spite of the absence of ghosts most of these theories are not unitary. This result confirms the difficulties of finding a consistent quantum field theory of quantum gravity.


2021 ◽  
Vol 8 ◽  
Author(s):  
Marco Finocchiaro ◽  
Daniele Oriti

We discuss motivation and goals of renormalization analyses of group field theory models of simplicial 4d quantum gravity, and review briefly the status of this research area. We present some new computations of perturbative Group field theories amplitudes, concerning in particular their scaling behavior, and the numerical techniques employed to obtain them. Finally, we suggest a number of research directions for further progress.


1989 ◽  
Vol 04 (06) ◽  
pp. 1493-1514 ◽  
Author(s):  
ABHAY ASHTEKAR ◽  
A.P. BALACHANDRAN ◽  
S. JO

It has recently been shown that one can reformulate general relativity in such a way that the canonical variables of the theory resemble those of Yang-Mills theory and the freedom in performing internal rotations on tetrads is completely analogous to the freedom in performing local gauge transformations in Yang-Mills theory. This reformulation is used to carry over, in the canonical framework, the analysis of the θ vacua and the associated CP problem from Yang-Mills theory to general relativity. The analysis depends only on certain qualitative features of general relativity—shared by other field theories of gravitation such as supergravity—and is insensitive to the details of the theory as well as of the way in which the canonical quantization program may be eventually completed.


2002 ◽  
Vol 17 (29) ◽  
pp. 4153-4160 ◽  
Author(s):  
HORST-HEINO VON BORZESZKOWSKI

We compare metric theories to theories with teleparallelism and affine theories of gravity in order to discuss perspectives in the canonical quantization of gravity opened by a realization of Mach's principle.


Author(s):  
Laurent Baulieu ◽  
John Iliopoulos ◽  
Roland Sénéor

The motivation for supersymmetry. The algebra, the superspace, and the representations. Field theory models and the non-renormalisation theorems. Spontaneous and explicit breaking of super-symmetry. The generalisation of the Montonen–Olive duality conjecture in supersymmetric theories. The remarkable properties of extended supersymmetric theories. A brief discussion of twisted supersymmetry in connection with topological field theories. Attempts to build a supersymmetric extention of the standard model and its experimental consequences. The property of gauge supersymmetry to include general relativity and the supergravity models.


Sign in / Sign up

Export Citation Format

Share Document