scholarly journals Metabolic Response to Daytime Dry Fasting in Bahá’í Volunteers

Author(s):  
Anja Mähler ◽  
Carmen Jahn ◽  
Lars Klug ◽  
Caroline Klatte ◽  
Andreas Michalsen ◽  
...  

Each year in March, adherents of the Bahá’í faith abstain from eating and drinking from sunrise to sunset for 19 days. Thus, Bahá’í fasting (BF) can be considered as a form of daytime dry fasting. We tested if BF decreases energy expenditure after a meal and improves anthropometric measures, and systemic and tissue-level metabolic parameters. This was a self-controlled cohort study with 11 healthy men. We measured anthropometric parameters, metabolic markers in venous blood, and pre- and postprandial energy metabolism at systemic (indirect calorimetry) and tissue (adipose tissue and skeletal muscle microdialysis) level, both before and during BF. During BF, we found reduced body weight, body mass index, body fat and blood glucose. Postprandial increase in energy expenditure was lower, diet-induced thermogenesis tended to be lower. In adipose tissue, perfusion, glucose supply and lipolysis were increased. In skeletal muscle, tissue perfusion did not change. Glucose supply and lipolysis were decreased. Glucose oxidation was increased, indicating an improved insulin sensitivity. BF may be a promising approach to losing weight and improving metabolism and health. However, outside the context of religiously-motivated fasting, skipping a meal rather in the evening (dinner cancelling) might be recommended, as metabolism appears to be reduced in the evening.

Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 148
Author(s):  
Anja Mähler ◽  
Carmen Jahn ◽  
Lars Klug ◽  
Caroline Klatte ◽  
Andreas Michalsen ◽  
...  

Each year in March, adherents of the Bahá’í faith abstain from eating and drinking from sunrise to sunset for 19 days. Thus, Bahá’í fasting (BF) can be considered as a form of daytime dry fasting. We investigated whether BF decreased energy expenditure after a meal and whether it improved anthropometric measures and systemic and tissue-level metabolic parameters. This was a self-controlled cohort study with 11 healthy men. We measured anthropometric parameters, metabolic markers in venous blood and pre- and postprandial energy metabolism at systemic (indirect calorimetry) and tissue (adipose tissue and skeletal muscle microdialysis) level, both before and during BF. During BF, we found reduced body weight, body mass index, body fat and blood glucose. Postprandial increase in energy expenditure was lower and diet-induced thermogenesis tended to be lower as well. In adipose tissue, perfusion, glucose supply and lipolysis were increased. In skeletal muscle, tissue perfusion did not change. Glucose supply and lipolysis were decreased. Glucose oxidation was increased, indicating improved insulin sensitivity. BF may be a promising approach to losing weight and improving metabolism and health. However, outside the context of religiously motivated fasting, skipping a meal in the evening (dinner cancelling) might be recommended, as metabolism appeared to be reduced in the evening.


1992 ◽  
Vol 263 (5) ◽  
pp. E850-E855 ◽  
Author(s):  
L. Simonsen ◽  
J. Bulow ◽  
J. Madsen ◽  
N. J. Christensen

Whole body energy expenditure, thermogenic and metabolic changes in the forearm, and intercellular glucose concentrations in subcutaneous adipose tissue on the abdomen determined by microdialysis were measured during epinephrine infusion in healthy subjects. After a control period, epinephrine was infused at rates of 0.2 and 0.4 nmol.kg-1 x min-1. Whole body resting energy expenditure was 4.36 +/- 0.56 (SD) kJ/min. Energy expenditure increased to 5.14 +/- 0.74 and 5.46 +/- 0.79 kJ/min, respectively (P < 0.001), during the epinephrine infusions. Respiratory exchange ratio was 0.80 +/- 0.04 in the resting state and did not change. Local forearm oxygen uptake was 3.9 +/- 1.3 mumol.100 g-1 x min-1 in the basal period. During epinephrine infusion, it increased to 5.8 +/- 2.1 (P < 0.03) and 7.5 +/- 2.3 mumol.100 g-1 x min-1 (P < 0.001). Local forearm glucose uptake was 0.160 +/- 0.105 mumol.100 g-1 x min-1 and increased to 0.586 +/- 0.445 and 0.760 +/- 0.534 mumol.100 g-1 x min-1 (P < 0.025). The intercellular glucose concentration in the subcutaneous adipose tissue on the abdomen was equal to the arterial concentration in the basal period but did not increase as much during infusion of epinephrine, indicating glucose uptake in adipose tissue in this condition. If it is assumed that forearm skeletal muscle is representative for the average skeletal muscle, it can be calculated that on average 40% of the enhanced whole body oxygen uptake induced by infusion of epinephrine is taking place in skeletal muscle. It is proposed that adipose tissue may contribute to epinephrine-induced thermogenesis.


1971 ◽  
Vol 49 (6) ◽  
pp. 545-553 ◽  
Author(s):  
Jean Himms–Hagen

The aim of these experiments was to depress the increased metabolic activity of the brown adipose tissue in the intact rat during acclimation to cold in order to elucidate further the possible thermogenic and endocrine functions of this tissue. The antibiotic oxytetracycline was administered twice daily for 2 weeks to rats living at 4 °C in an attempt to inhibit the proliferation of mitochondria and of mitochondrial inner membrane known to occur in the brown adipose tissue in response to cold; control rats received saline during the same period. Total cytochrome oxidase activity served as an index of the amount of mitochondrial inner membrane in brown adipose tissue, liver, and skeletal muscle. The development of an enhanced calorigenic response to intravenously infused noradrenaline served as an index of the extent of acclimation to cold.Treatment with oxytetracycline inhibited both the cold-induced increase in cytochrome oxidase activity in brown adipose tissue and the cold-induced development of an enhanced calorigenic response to noradrenaline in the intact rats; a direct correlation was noted between the amount of cytochrome oxidase in brown adipose tissue and the size of the metabolic response to noradrenaline of the intact animals. However, the amount of oxygen that could be consumed by the total cytochrome oxidase in the brown adipose tissue was itself too small to account for the increase in oxygen consumption by the rat. Treatment of the rats with oxytetracycline did not alter the cold-induced growth of brown adipose tissue (as judged by the increase in wet weight and the increase in total protein); it also did not alter the cytochrome oxidase activities of liver or skeletal muscle. The effect of oxytetracycline seems, therefore, to be fairly specific for the mitochondria of the most rapidly dividing tissue, the brown adipose tissue. The conclusion is drawn that a protein synthesized in the mitochondria of the brown adipose tissue in response to cold is essential for adaptation to cold.


2006 ◽  
Vol 290 (1) ◽  
pp. R219-R223 ◽  
Author(s):  
Michael Boschmann ◽  
Stefan Engeli ◽  
Frauke Adams ◽  
Gabriele Franke ◽  
Friedrich C. Luft ◽  
...  

ANG II applied to the interstitial space influences carbohydrate and lipid metabolism in a tissue-specific fashion. Thus endogenous ANG II may have a tonic effect on tissue metabolism that could be reversed with ANG II type 1 (AT1) receptor blockade, particularly during adrenergic stimulation. We studied 14 obese men. They were treated for 10 days with the AT1 receptor blocker irbesartan or with placebo in a double-blind and crossover fashion. At the end of each treatment period, we assessed skeletal muscle and adipose tissue metabolism using the microdialysis technique. The ethanol dilution technique was applied to follow changes in tissue blood flow. Measurements were obtained at baseline and during application of incremental isoproterenol concentrations through the microdialysis catheter. Blood pressure decreased from 133 ± 3/84 ± 3 to 128 ± 3/79 ± 2 mmHg for systolic and diastolic blood, respectively ( P = 0.02 and 0.006, respectively) with AT1 receptor blockade. Isoproterenol perfusion caused a dose-dependent increase in dialysate glycerol in adipose tissue and in skeletal muscle. Irbesartan slightly reduced the isoproterenol-induced glycerol response in adipose tissue ( P < 0.05 by ANOVA). Ethanol ratio, interstitial glucose supply, and lactate production in adipose tissue and skeletal muscle were similar with placebo and irbesartan. We conclude that AT1 receptor blockade in obese men does not reveal a major tonic ANG II effect on interstitial glucose supply, lipolysis, or glycolysis in skeletal muscle, either at rest or during β-adrenergic stimulation. Endogeneous ANG II may slightly increase adipose tissue lipolysis. The mechanism may promote the redistribution of triglycerides from adipose tissue toward other organs.


2015 ◽  
Vol 308 (4) ◽  
pp. E315-E323 ◽  
Author(s):  
Kana Ohyama ◽  
Yoshihito Nogusa ◽  
Katsuya Suzuki ◽  
Kosaku Shinoda ◽  
Shingo Kajimura ◽  
...  

Exercise effectively prevents the development of obesity and obesity-related diseases such as type 2 diabetes. Capsinoids (CSNs) are capsaicin analogs found in a nonpungent pepper that increase whole body energy expenditure. Although both exercise and CSNs have antiobesity functions, the effectiveness of exercise with CSN supplementation has not yet been investigated. Here, we examined whether the beneficial effects of exercise could be further enhanced by CSN supplementation in mice. Mice were randomly assigned to four groups: 1) high-fat diet (HFD, Control), 2) HFD containing 0.3% CSNs, 3) HFD with voluntary running wheel exercise (Exercise), and 4) HFD containing 0.3% CSNs with voluntary running wheel exercise (Exercise + CSN). After 8 wk of ingestion, blood and tissues were collected and analyzed. Although CSNs significantly suppressed body weight gain under the HFD, CSN supplementation with exercise additively decreased body weight gain and fat accumulation and increased whole body energy expenditure compared with exercise alone. Exercise together with CSN supplementation robustly improved metabolic profiles, including the plasma cholesterol level. Furthermore, this combination significantly prevented diet-induced liver steatosis and decreased the size of adipocyte cells in white adipose tissue. Exercise and CSNs significantly increased cAMP levels and PKA activity in brown adipose tissue (BAT), indicating an increase of lipolysis. Moreover, they significantly activated both the oxidative phosphorylation gene program and fatty acid oxidation in skeletal muscle. These results indicate that CSNs efficiently promote the antiobesity effect of exercise, in part by increasing energy expenditure via the activation of fat oxidation in skeletal muscle and lipolysis in BAT.


2020 ◽  
Vol 319 (3) ◽  
pp. E529-E539
Author(s):  
Jose Diego Botezelli ◽  
Peter Overby ◽  
Lorenzo Lindo ◽  
Su Wang ◽  
Obélia Haïda ◽  
...  

Hyperinsulinemia plays a causal role in adipose tissue expansion. Mice with reduced insulin have increased energy expenditure, but the mechanisms remained unclear. Here we investigated the effects of genetically reducing insulin production on uncoupling and oxidative mitochondrial proteins in liver, skeletal muscle, white adipose tissue (WAT), and brown adipose tissue (BAT). Male Ins1+/+ or Ins1+/− littermates were fed either a low-fat diet (LFD) or a high-fat diet (HFD) for 4 wk, starting at 8 wk of age. Replicating our previous observations, HFD increased fasting hyperinsulinemia, and Ins1+/− mice had significantly lower circulating insulin compared with Ins1+/+ littermates. Fasting glucose and body weight were not different between genotypes. We did not observe robust significant differences in liver or skeletal muscle. In mesenteric WAT, Ins1+/− mice had reduced Ndufb8 and Sdhb, while Ucp1 was increased in the context of HFD. HFD alone had a dramatic inhibitory effect on Pparg abundance. In inguinal WAT, Ins1+/− mice exhibited significant increases in oxidative complex proteins, independent of diet, without affecting Ucp1, Pparg, or Prdm16:Pparg association. In BAT, lowered insulin increased Sdhb protein levels that had been reduced by HFD. Ucp1 protein, Prdm16:Pparg association, and Sirt3 abundance were all increased in the absence of diet-induced hyperinsulinemia. Our data show that reducing insulin upregulates oxidative proteins in inguinal WAT without affecting Ucp1, whereas in mesenteric WAT and BAT, reducing insulin upregulates Ucp1 in the context of HFD. Preventing hyperinsulinemia has early depot-specific effects on adipose tissue metabolism and helps explain the increased energy expenditure previously reported in Ins1+/− mice.


Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 431 ◽  
Author(s):  
Da-Hye Lee ◽  
Jiyun Ahn ◽  
Young-Jin Jang ◽  
Hyo-Deok Seo ◽  
Tae-Youl Ha ◽  
...  

Withania somnifera (WS), commonly known as ashwagandha, possesses diverse biological functions. WS root has mainly been used as an herbal medicine to treat anxiety and was recently reported to have an anti-obesity effect, however, the mechanisms underlying its action remain to be explored. We hypothesized that WS exerts its anti-obesity effect by enhancing energy expenditure through improving the mitochondrial function of brown/beige adipocytes and skeletal muscle. Male C57BL/6J mice were fed a high-fat diet (HFD) containing 0.25% or 0.5% WS 70% ethanol extract (WSE) for 10 weeks. WSE (0.5%) supplementation significantly suppressed the increases in body weight and serum lipids, and lipid accumulation in the liver and adipose tissue induced by HFD. WSE supplementation increased oxygen consumption and enhanced mitochondrial activity in brown fat and skeletal muscle in the HFD-fed mice. In addition, it promoted browning of subcutaneous fat by increasing mitochondrial uncoupling protein 1 (UCP1) expression. Withaferin A (WFA), a major compound of WS, enhanced the differentiation of pre-adipocytes into beige adipocytes and oxygen consumption in C2C12 murine myoblasts. These results suggest that WSE ameliorates diet-induced obesity by enhancing energy expenditure via promoting mitochondrial function in adipose tissue and skeletal muscle, and WFA is a key regulator in this function.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Nobutomo Ikarashi ◽  
Takahiro Toda ◽  
Takehiro Okaniwa ◽  
Kiyomi Ito ◽  
Wataru Ochiai ◽  
...  

Acacia polyphenol (AP) extracted from the bark of the black wattle tree (Acacia meansii) is rich in unique catechin-like flavan-3-ols, such as robinetinidol and fisetinidol. The present study investigated the anti-obesity/anti-diabetic effects of AP using obese diabetic KKAy mice. KKAy mice received either normal diet, high-fat diet or high-fat diet with additional AP for 7 weeks. After the end of administration, body weight, plasma glucose and insulin were measured. Furthermore, mRNA and protein expression of obesity/diabetic suppression-related genes were measured in skeletal muscle, liver and white adipose tissue. As a result, compared to the high-fat diet group, increases in body weight, plasma glucose and insulin were significantly suppressed for AP groups. Furthermore, compared to the high-fat diet group, mRNA expression of energy expenditure-related genes (PPARα, PPARδ, CPT1, ACO and UCP3) was significantly higher for AP groups in skeletal muscle. Protein expressions of CPT1, ACO and UCP3 for AP groups were also significantly higher when compared to the high-fat diet group. Moreover, AP lowered the expression of fat acid synthesis-related genes (SREBP-1c, ACC and FAS) in the liver. AP also increased mRNA expression of adiponectin and decreased expression of TNF-αin white adipose tissue. In conclusion, the anti-obesity actions of AP are considered attributable to increased expression of energy expenditure-related genes in skeletal muscle, and decreased fatty acid synthesis and fat intake in the liver. These results suggest that AP is expected to be a useful plant extract for alleviating metabolic syndrome.


2006 ◽  
Vol 290 (3) ◽  
pp. E500-E508 ◽  
Author(s):  
Matthew J. Watt ◽  
Anna G. Holmes ◽  
Srijan K. Pinnamaneni ◽  
Andrew P. Garnham ◽  
Gregory R. Steinberg ◽  
...  

Hormone-sensitive lipase (HSL) is important for the degradation of triacylglycerol in adipose and muscle tissue, but the tissue-specific regulation of this enzyme is not fully understood. We investigated the effects of adrenergic stimulation and AMPK activation in vitro and in circumstances where AMPK activity and catecholamines are physiologically elevated in humans in vivo (during physical exercise) on HSL activity and phosphorylation at Ser563 and Ser660, the PKA regulatory sites, and Ser565, the AMPK regulatory site. In human experiments, skeletal muscle, subcutaneous adipose and venous blood samples were obtained before, at 15 and 90 min during, and 120 min after exercise. Skeletal muscle HSL activity was increased by ∼80% at 15 min compared with rest and returned to resting rates at the cessation of and 120 min after exercise. Consistent with changes in plasma epinephrine, skeletal muscle HSL Ser563 and Ser660 phosphorylation were increased by 27% at 15 min ( P < 0.05), remained elevated at 90 min, and returned to preexercise values postexercise. Skeletal muscle HSL Ser565 phosphorylation and AMPK signaling were increased at 90 min during, and after, exercise. Phosphorylation of adipose tissue HSL paralleled changes in skeletal muscle in vivo, except HSL Ser660 was elevated 80% in adipose compared with 35% in skeletal muscle during exercise. Studies in L6 myotubes and 3T3-L1 adipocytes revealed important tissue differences in the regulation of HSL. AMPK inhibited epinephrine-induced HSL activity in L6 myotubes and was associated with reduced HSL Ser660 but not Ser563 phosphorylation. HSL activity was reduced in L6 myotubes expressing constitutively active AMPK, confirming the inhibitory effects of AMPK on HSL activity. Conversely, in 3T3-L1 adipocytes, AMPK activation after epinephrine stimulation did not prevent HSL activity or glycerol release, which coincided with maintenance of HSL Ser660 phosphorylation. Taken together, these data indicate that HSL activity is maintained in the face of AMPK activation as a result of elevated HSL Ser660 phosphorylation in adipose tissue but not skeletal muscle.


Sign in / Sign up

Export Citation Format

Share Document