scholarly journals Urban Flood Risk Assessment: Integration of Decision Making and Machine Learning

Author(s):  
Fereshteh Taromideh ◽  
Ramin Fazloula ◽  
Bahram Choubin ◽  
Alireza Emadi ◽  
Ronny Berndtsson

Urban flood risk mapping is an important tool for the mitigation of flooding in view of human activities and climate change. Many developing countries, however, lack sufficiently detailed data to produce reliable risk maps with existing methods. Thus, improved methods are needed that can improve urban flood risk management in regions with scarce hydrological data. Given this, we estimated the flood risk map for Rasht City (Iran), applying a composition of decision-making and machine learning methods. Flood hazard maps were produced applying six state-of-the-art machine learning algorithms such as: classification and regression trees (CART), random forest (RF), boosted regression trees (BRT), multivariate adaptive regression splines (MARS), multivariate discriminant analysis (MDA), and support vector machine (SVM). Flood conditioning parameters applied in modeling were elevation, slope angle, aspect, rainfall, distance to river (DTR), distance to streets (DTS), soil hydrological group (SHG), curve number (CN), distance to urban drainage (DTUD), urban drainage density (UDD), and land use. In total, 93 flood location points were collected from the regional water company of Gilan province combined with field surveys. We used the Analytic Hierarchy Process (AHP) decision-making tool for creating an urban flood vulnerability map, which is according to population density (PD), dwelling quality (DQ), household income (HI), distance to cultural heritage (DTCH), distance to medical centers and hospitals (DTMCH), and land use. Then, the urban flood risk map was derived according to flood vulnerability and flood hazard maps. Evaluation of models was performed using receiver-operator characteristic curve (ROC), accuracy, probability of detection (POD), false alarm ratio (FAR), and precision. The results indicated that the CART model is most accurate model (AUC = 0.947, accuracy = 0.892, POD = 0.867, FAR = 0.071, and precision = 0.929). The results also demonstrated that DTR, UDD, and DTUD played important roles in flood hazard modeling; whereas, the population density was the most significant parameter in vulnerability mapping. These findings indicated that machine learning methods can improve urban flood risk management significantly in regions with limited hydrological data.

Author(s):  
Elham Rafiei Sardooi ◽  
Ali Azareh ◽  
Bahram Choubin ◽  
Amir Mosavi ◽  
John J. Clague

Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2021
Author(s):  
Chen-Fa Wu ◽  
Szu-Hung Chen ◽  
Ching-Wen Cheng ◽  
Luu Van Thong Trac

Developing countries in the global south that contribute less to climate change have suffered greater from its impacts, such as extreme climatic events and disasters compared to developed countries, causing climate justice concerns globally. Ho Chi Minh City has experienced increased intensity and frequency of climate change-induced urban floods, causing socio-economic damage that disturbs their livelihoods while urban populations continue to grow. This study aims to establish a citywide flood risk map to inform risk management in the city and address climate justice locally. This study applied a flood risk assessment framework integrating a coupled nature–human approach and examined the spatial distribution of urban flood hazard and urban flood vulnerability. A flood hazard map was generated using selected morphological and hydro-meteorological indicators. A flood vulnerability map was generated based on a literature review and a social survey weighed by experts’ priorities using the Fuzzy Delphi Method and Analytic Network Process. Vulnerability indicators including demographic characteristics, infrastructure, and land use patterns were used to generate a flood vulnerability map. The results illustrate that almost the entire central and northeastern parts of the city are at high flood risk, whereas the western part is at low flood risk. The findings have implications in urban planning via identifying risk hot spots in order to prioritize resources for mitigating hazards and enhancing community resilience to urban floods.


2020 ◽  
Vol 12 (21) ◽  
pp. 3548
Author(s):  
Karim I. Abdrabo ◽  
Sameh A. Kantoush ◽  
Mohamed Saber ◽  
Tetsuya Sumi ◽  
Omar M. Habiba ◽  
...  

Flood risk mapping forms the basis for disaster risk management and the associated decision-making systems. The effectiveness of this process is highly dependent on the quality of the input data of both hazard and vulnerability maps and the method utilized. On the one hand, for higher-quality hazard maps, the use of 2D models is generally suggested. However, in ungauged regions, such usage becomes a difficult task, especially at the microscale. On the other hand, vulnerability mapping at the microscale suffers limitations as a result of the failure to consider vulnerability components, the low spatial resolution of the input data, and the omission of urban planning aspects that have crucial impacts on the resulting quality. This paper aims to enhance the quality of both hazard and vulnerability maps at the urban microscale in ungauged regions. The proposed methodology integrates remote sensing data and high-quality city strategic plans (CSPs) using geographic information systems (GISs), a 2D rainfall-runoff-inundation (RRI) simulation model, and multicriteria decision-making analysis (MCDA, i.e., the analytic hierarchy process (AHP)). This method was implemented in Hurghada, Egypt, which from 1996 to 2019 was prone to several urban flood events. Current and future physical, social, and economic vulnerability maps were produced based on seven indicators (land use, building height, building conditions, building materials, total population, population density, and land value). The total vulnerability maps were combined with the hazard maps based on the Kron equation for three different return periods (REPs) 50, 10, and 5 years to create the corresponding flood risk maps. In general, this integrated methodology proved to be an economical tool to overcome the scarcity of data, to fill the gap between urban planning and flood risk management (FRM), and to produce comprehensive and high-quality flood risk maps that aid decision-making systems.


2019 ◽  
Vol 569 ◽  
pp. 142-154 ◽  
Author(s):  
Hamid Darabi ◽  
Bahram Choubin ◽  
Omid Rahmati ◽  
Ali Torabi Haghighi ◽  
Biswajeet Pradhan ◽  
...  

2019 ◽  
Vol 2 (1) ◽  
pp. 41-52
Author(s):  
Nitin Mundhe

Floods are natural risk with a very high frequency, which causes to environmental, social, economic and human losses. The floods in the town happen mainly due to human made activities about the blockage of natural drainage, haphazard construction of roads, building, and high rainfall intensity. Detailed maps showing flood vulnerability areas are helpful in management of flood hazards. Therefore, present research focused on identifying flood vulnerability zones in the Pune City using multi-criteria decision-making approach in Geographical Information System (GIS) and inputs from remotely sensed imageries. Other input data considered for preparing base maps are census details, City maps, and fieldworks. The Pune City classified in to four flood vulnerability classes essential for flood risk management. About 5 per cent area shows high vulnerability for floods in localities namely Wakdewadi, some part of the Shivajinagar, Sangamwadi, Aundh, and Baner with high risk.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Alan Brnabic ◽  
Lisa M. Hess

Abstract Background Machine learning is a broad term encompassing a number of methods that allow the investigator to learn from the data. These methods may permit large real-world databases to be more rapidly translated to applications to inform patient-provider decision making. Methods This systematic literature review was conducted to identify published observational research of employed machine learning to inform decision making at the patient-provider level. The search strategy was implemented and studies meeting eligibility criteria were evaluated by two independent reviewers. Relevant data related to study design, statistical methods and strengths and limitations were identified; study quality was assessed using a modified version of the Luo checklist. Results A total of 34 publications from January 2014 to September 2020 were identified and evaluated for this review. There were diverse methods, statistical packages and approaches used across identified studies. The most common methods included decision tree and random forest approaches. Most studies applied internal validation but only two conducted external validation. Most studies utilized one algorithm, and only eight studies applied multiple machine learning algorithms to the data. Seven items on the Luo checklist failed to be met by more than 50% of published studies. Conclusions A wide variety of approaches, algorithms, statistical software, and validation strategies were employed in the application of machine learning methods to inform patient-provider decision making. There is a need to ensure that multiple machine learning approaches are used, the model selection strategy is clearly defined, and both internal and external validation are necessary to be sure that decisions for patient care are being made with the highest quality evidence. Future work should routinely employ ensemble methods incorporating multiple machine learning algorithms.


Sign in / Sign up

Export Citation Format

Share Document