scholarly journals Effect of Silane Coating on the Corrosion Resistance of TiO2 Conversion Films

Author(s):  
Delin Lai ◽  
2013 ◽  
Vol 686 ◽  
pp. 244-249 ◽  
Author(s):  
Poovarasi Balan ◽  
Aaron Ng ◽  
Chee Beng Siang ◽  
R.K. Singh Raman ◽  
Eng Seng Chan

Chromium pre-treatments of metal have been replaced by silane pre-treatments as more environmental friendly option. Nanoparticles can be added in the silane sol-gel network have been reported to improve corrosion resistance. In this work, the electrochemical corrosion resistance of low carbon steel coated with hybrid organic-inorganic sol-gel film filled with nanoparticles was evaluated. The sol-gel films have been synthesized from 3-glycidoxy-propyl-trimethoxy-silane (3-GPTMS) and tetra-ethyl-ortho-silicate (TEOS) precursors. These films have been impregnated with 300 ppm of silica or alumina nanoparticles. The electrochemical behavior of the coated steel was evaluated by means of electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). Equivalent circuit modeling, used for quantifying the EIS measurements showed that sol-gel films containing silica nanoparticles improved the barrier properties of the silane coating. The silica nanoparticle-containing films showed highest initial pore resistance over the five days of immersion in 0.05M NaCl.


2013 ◽  
Vol 765 ◽  
pp. 803-807
Author(s):  
Gaur Swati ◽  
Anand Sawroop Khanna ◽  
Raghuvir Kumar Singh Raman

In the present study, combinations of a phosphonato silane with a precursor, Methyltriethoxy silane (MTEOS) in various ratios were applied onto the alloy Mg-6Zn-Ca. The corrosion resistance of the coated and uncoated specimens in a modified simulated body fluid (m-SBF) was characterized by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Results suggest that the silane coating significantly decreases the degradation rate of the magnesium alloy, indicating its potential to be used as a corrosion barrier for magnesium alloy temporary implants.


RSC Advances ◽  
2015 ◽  
Vol 5 (1) ◽  
pp. 706-716 ◽  
Author(s):  
F. Ansari ◽  
R. Naderi ◽  
C. Dehghanian

An eco-friendly silane sol–gel coating incorporating nanoclay was formulated to provide an effective corrosion protection for stainless steel 304L in a NaCl solution.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Zhijie Zhao ◽  
Mohammad Tabish ◽  
Jingmao Zhao ◽  
Muhammad Junaid Anjum ◽  
Wei Wang ◽  
...  

Abstract Magnesium alloys have found widespread application as engineering and functional materials in automobile, aerospace, electronics, and biomedical industries. However, these alloys are susceptible to corrosion, and the development of new anticorrosion coatings on Mg alloys surface is urgently needed. In this work, pristine and doped double-layer silane coatings were applied to the AZ91D Mg alloy surface in order to improve its corrosion resistance properties in a 3.5% NaCl solution. The doped silane coatings consisted of KH-550 as the bottom layer and Nd(NO3)3-doped bis-(γ-triethoxysilylpropyl)-tetrasulfide (BTESPT) as the top layer. The effect of Nd(NO3)3 concentration on the corrosion inhibition properties of silane coatings was studied, and the highest corrosion resistance was achieved when the Nd(NO3)3 concentration was 5 × 10−3 mol/L. Compared to the pristine coating, the doped coating had enhanced hydrophobicity with a water contact angle of 108° and, to the best of our knowledge, one of the lowest corrosion current densities (1.51 × 10−2 μA/cm2) reported to date for treated AZ91D. These significant improvements were attributed to the presence of the Si-O-Nd network in the doped coating, leading to the uniform and homogeneous nature and excellent anticorrosion properties of Nd-doped silane coating.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6663
Author(s):  
Abhishek Saxena ◽  
R. K. Singh Raman

Coating of an organo-silane (Bis-1,2-(TriethoxySilyl)Ethane (BTSE)) has been observed to improve the corrosion resistance of magnesium alloy AZ91D. Three different types of surface preparations have been employed before condensing the silane coating on to the substrate. Corrosion resistance was investigated using electrochemical impedance spectroscopy (EIS). A specific alkali treatment of the substrate prior to the coating has been found to improve the corrosion resistance of the coated alloy, which has been attributed to the ability of the treatment in facilitating the condensation of a relatively compact siloxane film.


Sign in / Sign up

Export Citation Format

Share Document