scholarly journals Rule Extraction by Structural Learning with an Immediate Critic

Author(s):  
Masumi Ishikawa ◽  

Studies on rule extraction using neural networks have exclusively adopted supervised learning, in which correct outputs are always given as training samples. The real world, however, does not always provide correct answers. We advocate the use of learning with an immediate critic, which is simple reinforcement learning. It uses an immediate binary reinforcement signal indicating whether or not an output is correct. This, of course, makes learning more difficult and time-consuming than supervised learning. Learning with an immediate critic alone, however, is not powerful enough in extracting rules from data because distributed representation emerges just as in back propagation learning. We propose to combine learning with an immediate critic and structural learning with forgetting (SLF) - structural learning with an immediate critic and forgetting (SLCF). A procedure of rule extraction from data by SLCF is similar to that by SLF. Applications of the proposed method to rule extraction from lenses data demonstrate its effectiveness.

Aerospace ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 258
Author(s):  
Daichi Wada ◽  
Sergio A. Araujo-Estrada ◽  
Shane Windsor

Nonlinear flight controllers for fixed-wing unmanned aerial vehicles (UAVs) can potentially be developed using deep reinforcement learning. However, there is often a reality gap between the simulation models used to train these controllers and the real world. This study experimentally investigated the application of deep reinforcement learning to the pitch control of a UAV in wind tunnel tests, with a particular focus of investigating the effect of time delays on flight controller performance. Multiple neural networks were trained in simulation with different assumed time delays and then wind tunnel tested. The neural networks trained with shorter delays tended to be susceptible to delay in the real tests and produce fluctuating behaviour. The neural networks trained with longer delays behaved more conservatively and did not produce oscillations but suffered steady state errors under some conditions due to unmodeled frictional effects. These results highlight the importance of performing physical experiments to validate controller performance and how the training approach used with reinforcement learning needs to be robust to reality gaps between simulation and the real world.


2021 ◽  
pp. 027836492098785
Author(s):  
Julian Ibarz ◽  
Jie Tan ◽  
Chelsea Finn ◽  
Mrinal Kalakrishnan ◽  
Peter Pastor ◽  
...  

Deep reinforcement learning (RL) has emerged as a promising approach for autonomously acquiring complex behaviors from low-level sensor observations. Although a large portion of deep RL research has focused on applications in video games and simulated control, which does not connect with the constraints of learning in real environments, deep RL has also demonstrated promise in enabling physical robots to learn complex skills in the real world. At the same time, real-world robotics provides an appealing domain for evaluating such algorithms, as it connects directly to how humans learn: as an embodied agent in the real world. Learning to perceive and move in the real world presents numerous challenges, some of which are easier to address than others, and some of which are often not considered in RL research that focuses only on simulated domains. In this review article, we present a number of case studies involving robotic deep RL. Building off of these case studies, we discuss commonly perceived challenges in deep RL and how they have been addressed in these works. We also provide an overview of other outstanding challenges, many of which are unique to the real-world robotics setting and are not often the focus of mainstream RL research. Our goal is to provide a resource both for roboticists and machine learning researchers who are interested in furthering the progress of deep RL in the real world.


Author(s):  
Buvanesh Pandian V

Reinforcement learning is a mathematical framework for agents to interact intelligently with their environment. Unlike supervised learning, where a system learns with the help of labeled data, reinforcement learning agents learn how to act by trial and error only receiving a reward signal from their environments. A field where reinforcement learning has been prominently successful is robotics [3]. However, real-world control problems are also particularly challenging because of the noise and high- dimensionality of input data (e.g., visual input). In recent years, in the field of supervised learning, deep neural networks have been successfully used to extract meaning from this kind of data. Building on these advances, deep reinforcement learning was used to solve complex problems like Atari games and Go. Mnih et al. [1] built a system with fixed hyper parameters able to learn to play 49 different Atari games only from raw pixel inputs. However, in order to apply the same methods to real-world control problems, deep reinforcement learning has to be able to deal with continuous action spaces. Discretizing continuous action spaces would scale poorly, since the number of discrete actions grows exponentially with the dimensionality of the action. Furthermore, having a parametrized policy can be advantageous because it can generalize in the action space. Therefore with this thesis we study state-of-the-art deep reinforcement learning algorithm, Deep Deterministic Policy Gradients. We provide a theoretical comparison to other popular methods, an evaluation of its performance, identify its limitations and investigate future directions of research. The remainder of the thesis is organized as follows. We start by introducing the field of interest, machine learning, focusing our attention of deep learning and reinforcement learning. We continue by describing in details the two main algorithms, core of this study, namely Deep Q-Network (DQN) and Deep Deterministic Policy Gradients (DDPG). We then provide implementatory details of DDPG and our test environment, followed by a description of benchmark test cases. Finally, we discuss the results of our evaluation, identifying limitations of the current approach and proposing future avenues of research.


2013 ◽  
Vol 441 ◽  
pp. 738-741 ◽  
Author(s):  
Shuo Ding ◽  
Xiao Heng Chang ◽  
Qing Hui Wu

The network model of probabilistic neural network and its method of pattern classification and discrimination are first introduced in this paper. Then probabilistic neural network and three usually used back propagation neural networks are established through MATLAB7.0. The pattern classification of dots on a two-dimensional plane is taken as an example. Probabilistic neural network and improved back propagation neural networks are used to classify these dots respectively. Their classification results are compared with each other. The simulation results show that compared with back propagation neural networks, probabilistic neural network has simpler learning rules, faster training speed and it needs fewer training samples; the pattern classification method based on probabilistic neural network is very effective, and it is superior to the one based on back propagation neural networks in classifying speed, accuracy as well as generalization ability.


Author(s):  
Anibal Pedraza ◽  
Oscar Deniz ◽  
Gloria Bueno

AbstractThe phenomenon of Adversarial Examples has become one of the most intriguing topics associated to deep learning. The so-called adversarial attacks have the ability to fool deep neural networks with inappreciable perturbations. While the effect is striking, it has been suggested that such carefully selected injected noise does not necessarily appear in real-world scenarios. In contrast to this, some authors have looked for ways to generate adversarial noise in physical scenarios (traffic signs, shirts, etc.), thus showing that attackers can indeed fool the networks. In this paper we go beyond that and show that adversarial examples also appear in the real-world without any attacker or maliciously selected noise involved. We show this by using images from tasks related to microscopy and also general object recognition with the well-known ImageNet dataset. A comparison between these natural and the artificially generated adversarial examples is performed using distance metrics and image quality metrics. We also show that the natural adversarial examples are in fact at a higher distance from the originals that in the case of artificially generated adversarial examples.


1997 ◽  
Vol 08 (05n06) ◽  
pp. 509-515
Author(s):  
Yan Li ◽  
A. B. Rad

A new structure and training method for multilayer neural networks is presented. The proposed method is based on cascade training of subnetworks and optimizing weights layer by layer. The training procedure is completed in two steps. First, a subnetwork, m inputs and n outputs as the style of training samples, is trained using the training samples. Secondly the outputs of the subnetwork is taken as the inputs and the outputs of the training sample as the desired outputs, another subnetwork with n inputs and n outputs is trained. Finally the two trained subnetworks are connected and a trained multilayer neural networks is created. The numerical simulation results based on both linear least squares back-propagation (LSB) and traditional back-propagation (BP) algorithm have demonstrated the efficiency of the proposed method.


2021 ◽  
pp. 1-16
Author(s):  
Bing Yu ◽  
Hua Qi ◽  
Guo Qing ◽  
Felix Juefei-Xu ◽  
Xiaofei Xie ◽  
...  

Author(s):  
Yusuke Taguchi ◽  
Hideitsu Hino ◽  
Keisuke Kameyama

AbstractThere are many situations in supervised learning where the acquisition of data is very expensive and sometimes determined by a user’s budget. One way to address this limitation is active learning. In this study, we focus on a fixed budget regime and propose a novel active learning algorithm for the pool-based active learning problem. The proposed method performs active learning with a pre-trained acquisition function so that the maximum performance can be achieved when the number of data that can be acquired is fixed. To implement this active learning algorithm, the proposed method uses reinforcement learning based on deep neural networks as as a pre-trained acquisition function tailored for the fixed budget situation. By using the pre-trained deep Q-learning-based acquisition function, we can realize the active learner which selects a sample for annotation from the pool of unlabeled samples taking the fixed-budget situation into account. The proposed method is experimentally shown to be comparable with or superior to existing active learning methods, suggesting the effectiveness of the proposed approach for the fixed-budget active learning.


Sign in / Sign up

Export Citation Format

Share Document