Recommender System Employing Personal-Value-Based User Model

Author(s):  
Shunichi Hattori ◽  
◽  
Yasufumi Takama

This paper proposes a recommender system based on personal-value-based user model. Conventional methods such as collaborative and content-based approaches tend to be less accurate for new users and items due to the lack of a relation between items and user preferences. While existing recommender systems usually employ user preferences of items for making recommendations, proposed method focuses on users’ personal values, which mean value judgments regarding on which attributes users put a high priority. The proposed recommender system employing personal-value-based user model is thus expected to realize more precise recommendations in cold-start situations. As one of typical cold-start situations, a prototype system is developed for recommendation using external resources. Experimental results show that generated user models reflect each user’s value judgment on attributes. In addition, the results also show that recommendation employing the proposed user model realizes improvements of precision in cold-start situations.

2016 ◽  
Vol 43 (1) ◽  
pp. 135-144 ◽  
Author(s):  
Mehdi Hosseinzadeh Aghdam ◽  
Morteza Analoui ◽  
Peyman Kabiri

Recommender systems have been widely used for predicting unknown ratings. Collaborative filtering as a recommendation technique uses known ratings for predicting user preferences in the item selection. However, current collaborative filtering methods cannot distinguish malicious users from unknown users. Also, they have serious drawbacks in generating ratings for cold-start users. Trust networks among recommender systems have been proved beneficial to improve the quality and number of predictions. This paper proposes an improved trust-aware recommender system that uses resistive circuits for trust inference. This method uses trust information to produce personalized recommendations. The result of evaluating the proposed method on Epinions dataset shows that this method can significantly improve the accuracy of recommender systems while not reducing the coverage of recommender systems.


2020 ◽  
Vol 29 (15) ◽  
pp. 2050249
Author(s):  
Ming Ye ◽  
Yuanle Deng

The recommender system predicts user preferences by mining user historical behavior data. This paper proposes a social recommendation combining trust relationship and distance metric factorization. On the one hand, the recommender system has a cold start problem, which can be effectively alleviated by adding social relations. Simultaneously, to improve the problem of sparse trust matrix, we use the Jaccard similarity coefficient and the Dijkstra algorithm to reconstruct the trust matrix and explore the potential user trust relationship. On the other hand, the traditional matrix factorization algorithm is modeled by the user item potential factor dot product, however, it does not satisfy the triangle inequality property and affects the final recommender effect. The primary motivator behind our approach is to combine the best of both worlds, mitigate the inherent weaknesses of each paradigm. Combining the advantages of the two ideas, it has been demonstrated that our algorithm can enhance recommender performance and improve cold start in recommender systems.


2021 ◽  
Vol 11 (6) ◽  
pp. 2817
Author(s):  
Tae-Gyu Hwang ◽  
Sung Kwon Kim

A recommender system (RS) refers to an agent that recommends items that are suitable for users, and it is implemented through collaborative filtering (CF). CF has a limitation in improving the accuracy of recommendations based on matrix factorization (MF). Therefore, a new method is required for analyzing preference patterns, which could not be derived by existing studies. This study aimed at solving the existing problems through bias analysis. By analyzing users’ and items’ biases of user preferences, the bias-based predictor (BBP) was developed and shown to outperform memory-based CF. In this paper, in order to enhance BBP, multiple bias analysis (MBA) was proposed to efficiently reflect the decision-making in real world. The experimental results using movie data revealed that MBA enhanced BBP accuracy, and that the hybrid models outperformed MF and SVD++. Based on this result, MBA is expected to improve performance when used as a system in related studies and provide useful knowledge in any areas that need features that can represent users.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Fu Jie Tey ◽  
Tin-Yu Wu ◽  
Chiao-Ling Lin ◽  
Jiann-Liang Chen

AbstractRecent advances in Internet applications have facilitated information spreading and, thanks to a wide variety of mobile devices and the burgeoning 5G networks, users easily and quickly gain access to information. Great amounts of digital information moreover have contributed to the emergence of recommender systems that help to filter information. When the rise of mobile networks has pushed forward the growth of social media networks and users get used to posting whatever they do and wherever they visit on the Web, such quick social media updates already make it difficult for users to find historical data. For this reason, this paper presents a social network-based recommender system. Our purpose is to build a user-centered recommender system to exclude the products that users are disinterested in according to user preferences and their friends' shopping experiences so as to make recommendations effective. Since there might be no corresponding reference value for new products or services, we use indirect relations between friends and “friends’ friends” as well as sentinel friends to improve the recommendation accuracy. The simulation result has proven that our proposed mechanism is efficient in enhancing recommendation accuracy.


Information ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 296
Author(s):  
Laila Esheiba ◽  
Amal Elgammal ◽  
Iman M. A. Helal ◽  
Mohamed E. El-Sharkawi

Manufacturers today compete to offer not only products, but products accompanied by services, which are referred to as product-service systems (PSSs). PSS mass customization is defined as the production of products and services to meet the needs of individual customers with near-mass-production efficiency. In the context of the PSS mass customization environment, customers are overwhelmed by a plethora of previously customized PSS variants. As a result, finding a PSS variant that is precisely aligned with the customer’s needs is a cognitive task that customers will be unable to manage effectively. In this paper, we propose a hybrid knowledge-based recommender system that assists customers in selecting previously customized PSS variants from a wide range of available ones. The recommender system (RS) utilizes ontologies for capturing customer requirements, as well as product-service and production-related knowledge. The RS follows a hybrid recommendation approach, in which the problem of selecting previously customized PSS variants is encoded as a constraint satisfaction problem (CSP), to filter out PSS variants that do not satisfy customer needs, and then uses a weighted utility function to rank the remaining PSS variants. Finally, the RS offers a list of ranked PSS variants that can be scrutinized by the customer. In this study, the proposed recommendation approach was applied to a real-life large-scale case study in the domain of laser machines. To ensure the applicability of the proposed RS, a web-based prototype system has been developed, realizing all the modules of the proposed RS.


Sign in / Sign up

Export Citation Format

Share Document