Time Series Prediction of Tropical Storm Trajectory Using Self-Organizing Incremental Neural Networks and Error Evaluation

Author(s):  
Wonjik Kim ◽  
Osamu Hasegawa ◽  
◽  
◽  

This study proposes a route prediction method using a self-organizing incremental neural network. The route trajectory is predicted from two location parameters (the latitude and longitude of the middle of a tropical storm) and the meteorological information (the atmospheric pressure). The method accurately predicted the normalized atmospheric pressure data of East Asia in the topological space of latitude and longitude, with low calculation cost. This paper explains the algorithms for training the self-organizing incremental neural network, the procedure for refining the datasets and the method for predicting the storm trajectory. The effectiveness of the proposed method was confirmed in experiments. With the results of experiments, possibility of prediction model improvement is discussed. Additionally, this paper explains the limitations of proposed method and brief solution to resolve. Although the proposed method was applied only to typhoon phenomena in the present study, it is potentially applicable to a wide range of global problems.

2020 ◽  
Vol 29 (07n08) ◽  
pp. 2040010
Author(s):  
Shao-Pei Ji ◽  
Yu-Long Meng ◽  
Liang Yan ◽  
Gui-Shan Dong ◽  
Dong Liu

Time series data from real problems have nonlinear, non-smooth, and multi-scale composite characteristics. This paper first proposes a gated recurrent unit-correction (GRU-corr) network model, which adds a correction layer to the GRU neural network. Then, a adaptive staged variation PSO (ASPSO) is proposed. Finally, to overcome the drawbacks of the imprecise selection of the GRU-corr network parameters and obtain the high-precision global optimization of network parameters, weight parameters and the hidden nodes number of GRU-corr is optimized by ASPSO, and a time series prediction model (ASPSO-GRU-corr) is proposed based on the GRU-corr optimized by ASPSO. In the experiment, a comparative analysis of the optimization performance of ASPSO on a benchmark function was performed to verify its validity, and then the ASPSO-GRU-corr model is used to predict the ship motion cross-sway angle data. The results show that, ASPSO has better optimization performance and convergence speed compared with other algorithms, while the ASPSO-GRU-corr has higher generalization performance and lower architecture complexity. The ASPSO-GRU-corr can reveal the intrinsic multi-scale composite features of the time series, which is a reliable nonlinear and non-steady time series prediction method.


2020 ◽  
Vol 52 (2) ◽  
pp. 1485-1500
Author(s):  
Jiaojiao Hu ◽  
Xiaofeng Wang ◽  
Ying Zhang ◽  
Depeng Zhang ◽  
Meng Zhang ◽  
...  

2010 ◽  
Vol 40-41 ◽  
pp. 930-936 ◽  
Author(s):  
Cong Gui Yuan ◽  
Xin Zheng Zhang ◽  
Shu Qiong Xu

A nonlinear correlative time series prediction method is presented in this paper.It is based on the mutual information of time series and orthogonal polynomial basis neural network. Inputs of network are selected by mutual information, and orthogonal polynomial basis is used as active function.The network is trained by an error iterative learning algorithm.This proposed method for nonlinear time series is tested using two well known time series prediction problems:Gas furnace data time series and Mackey-Glass time series.


2013 ◽  
Vol 380-384 ◽  
pp. 1673-1676
Author(s):  
Juan Du

In order to show the time cumulative effect in the process for the time series prediction, the process neural network is taken. The training algorithm of modified particle swarm is used to the model for the learning speed. The training data is sunspot data from 1700 to 2007. Simulation result shows that the prediction model and algorithm has faster training speed and prediction accuracy than the artificial neural network.


Author(s):  
Wonjik Kim ◽  
Osamu Hasegawa ◽  
◽  
◽  

In this study, we propose a simultaneous forecasting model for meteorological time-series data based on a self-organizing incremental neural network (SOINN). Meteorological parameters (i.e., temperature, wet bulb temperature, humidity, wind speed, atmospheric pressure, and total solar radiation on a horizontal surface) are considered as input data for the prediction of meteorological time-series information. Based on a SOINN within normalized-refined-meteorological data, proposed model succeeded forecasting temperature, humidity, wind speed and atmospheric pressure simultaneously. In addition, proposed model does not take more than 2 s in training half-year period and 15 s in testing half-year period. This paper also elucidates the SOINN and the algorithm of the learning process. The effectiveness of our model is established by comparison of our results with experimental results and with results obtained by another model. Three advantages of our model are also described. The obtained information can be effective in applications based on neural networks, and the proposed model for handling meteorological phenomena may be helpful for other studies worldwide including energy management system.


2012 ◽  
Vol 22 (01) ◽  
pp. 21-35 ◽  
Author(s):  
FAN LIU ◽  
MENG JOO ER

In this paper, a novel efficient learning algorithm towards self-generating fuzzy neural network (SGFNN) is proposed based on ellipsoidal basis function (EBF) and is functionally equivalent to a Takagi-Sugeno-Kang (TSK) fuzzy system. The proposed algorithm is simple and efficient and is able to generate a fuzzy neural network with high accuracy and compact structure. The structure learning algorithm of the proposed SGFNN combines criteria of fuzzy-rule generation with a pruning technology. The Kalman filter (KF) algorithm is used to adjust the consequent parameters of the SGFNN. The SGFNN is employed in a wide range of applications ranging from function approximation and nonlinear system identification to chaotic time-series prediction problem and real-world fuel consumption prediction problem. Simulation results and comparative studies with other algorithms demonstrate that a more compact architecture with high performance can be obtained by the proposed algorithm. In particular, this paper presents an adaptive modeling and control scheme for drug delivery system based on the proposed SGFNN. Simulation study demonstrates the ability of the proposed approach for estimating the drug's effect and regulating blood pressure at a prescribed level.


Sign in / Sign up

Export Citation Format

Share Document