scholarly journals Robot Manipulators Control with Guaranteed Stability Using Feedback Error Learning Neural Networks

1996 ◽  
Vol 8 (4) ◽  
pp. 383-391
Author(s):  
Ju-Jang Lee ◽  
◽  
Sung-Woo Kim ◽  
Kang-Bark Park

Among various neural network learning control schemes, feedback error learning(FEL)8),9) has been known that it has advantages over other schemes. However, such advantages are founded on the assumption that the systems is linearly parameterized and stable. Thus, FEL has difficulties in coping with uncertain and unstable systems. Furthermore, it is not clear how the learning rule of FEL is obtained in the minimization sense. Therefore, to overcome such problems, we propose neural network control schemes using FEL with guaranteed performance. The proposed strategy is to use multi-layer neural networks, to design a stabilityguaranteeing controller(SGC), and to derive a learning rule to obtain the tracking performance. Using multilayer neural networks we can fully utilize the learning capability no matter how the system is linearly parameterized or not. The SGC makes it possible for the neural network to learn without fear of instability. As a result, the more the neural network learning proceeds, the better the tracking performance becomes.

2020 ◽  
pp. 42-56
Author(s):  
M.M. Matushin ◽  
D.A. Makhalov

The paper discusses application of artificial intelligence (neural networks) technologies for automated analysis of dynamic processes of the “Soyuz” launch vehicle’s onboard systems. Cyclogram of strap-on boosters separa-tion as applied to this task, and telemetry measurement used to monitor this process are described. The general information about the construction of the used types of neural networks and about their learning using a back-propagation method is presented; the neural network configuration for solving the mentioned task, telemetry presentation format suitable for sup-plying power for the neural network, and features of the neural network learning are proposed. The approbation of the trained neural network for the analysis of launches of the “Soyuz-FG” and “Soyuz-2.1a” launch vehi-cles using telemetry in real-time and delayed modes was carried out.


2020 ◽  
Vol 6 (4) ◽  
pp. 467-476
Author(s):  
Xinxin Liu ◽  
Yunfeng Zhang ◽  
Fangxun Bao ◽  
Kai Shao ◽  
Ziyi Sun ◽  
...  

AbstractThis paper proposes a kernel-blending connection approximated by a neural network (KBNN) for image classification. A kernel mapping connection structure, guaranteed by the function approximation theorem, is devised to blend feature extraction and feature classification through neural network learning. First, a feature extractor learns features from the raw images. Next, an automatically constructed kernel mapping connection maps the feature vectors into a feature space. Finally, a linear classifier is used as an output layer of the neural network to provide classification results. Furthermore, a novel loss function involving a cross-entropy loss and a hinge loss is proposed to improve the generalizability of the neural network. Experimental results on three well-known image datasets illustrate that the proposed method has good classification accuracy and generalizability.


Author(s):  
Anthony Robins ◽  
◽  
Marcus Frean ◽  

In this paper, we explore the concept of sequential learning and the efficacy of global and local neural network learning algorithms on a sequential learning task. Pseudorehearsal, a method developed by Robins19) to solve the catastrophic forgetting problem which arises from the excessive plasticity of neural networks, is significantly more effective than other local learning algorithms for the sequential task. We further consider the concept of local learning and suggest that pseudorehearsal is so effective because it works directly at the level of the learned function, and not indirectly on the representation of the function within the network. We also briefly explore the effect of local learning on generalization within the task.


Author(s):  
Rached Dhaouadi ◽  
◽  
Khaled Nouri

We present an application of artificial neural networks to the problem of controlling the speed of an elastic drive system. We derive a neural network structure to simulate the inverse dynamics of the system, then implement the direct inverse control scheme in a closed loop. The neural network learning is done on-line to adaptively control the speed to follow a stepwise changing reference. The experimental results with a two-mass-model analog board confirm the effectiveness of the proposed neurocontrol scheme.


2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Rikke Amilde Løvlid

Echo state networks are a relatively new type of recurrent neural networks that have shown great potentials for solving non-linear, temporal problems. The basic idea is to transform the low dimensional temporal input into a higher dimensional state, and then train the output connection weights to make the system output the target information. Because only the output weights are altered, training is typically quick and computationally efficient compared to training of other recurrent neural networks. This paper investigates using an echo state network to learn the inverse kinematics model of a robot simulator with feedback-error-learning. In this scheme teacher forcing is not perfect, and joint constraints on the simulator makes the feedback error inaccurate. A novel training method which is less influenced by the noise in the training data is proposed and compared to the traditional ESN training method.


Sign in / Sign up

Export Citation Format

Share Document