Origami Folding by a Robotic Hand

2008 ◽  
Vol 20 (4) ◽  
pp. 550-558 ◽  
Author(s):  
Kenta Tanaka ◽  
◽  
Yusuke Kamotani ◽  
Yasuyoshi Yokokohji

Dexterous manipulation by a robotic hand is a difficult problem involving (1) how to design a robot that gives the capability to achieve the task and (2) how to control the designed robot to actually conduct the task. In this paper, we take a task-oriented approach called “task capture” to construct a dexterous robot hand system. Before designing the robot, we analyze how a human being conducts the task, focusing on how the target object is manipulated rather than trying to imitate human finger movement. Based on the captured task, we design a robot that manipulates an object in the same way as a human being may do, with a mechanism as simple as possible, rather than concerning human appearance. As a target task, we choose origami paper folding. We first analyze the difficulty of origami manipulation and design a robotic mechanism that folds an origami form, the Tadpole, based on the proposed approach. The proof of how well the “task capture” approach works is demonstrated by a simple robot we developed, which folds a Tadpole consecutively.

Robotica ◽  
2018 ◽  
Vol 36 (8) ◽  
pp. 1206-1224 ◽  
Author(s):  
P. Vulliez ◽  
J. P. Gazeau ◽  
P. Laguillaumie ◽  
H. Mnyusiwalla ◽  
P. Seguin

SUMMARYThis paper presents a novel tendon-driven bio-inspired robotic hand design for in-hand manipulation. Many dexterous robot hands are able to produce adaptive grasping, but only a few human-sized hands worldwide are able to produce fine motions of the object in the hand. One of the challenges for the near future is to develop human-sized robot hands with human dexterity. Most of the existing hands considered in the literature suffer from dry friction which creates unwanted backlash and non-linearities. These problems limit the accurate control of the fingers and the capabilities of the hand. Such was the case with our first fully actuated dexterous robot hand: the Laboratoire de Mécanique des Solides (LMS) hand.The mechanical design of the hand relies on a tendon-based transmission system. Developing a fully actuated dexterous robot hand requires the routing of the tendons through the finger for the actuation of each joint. This paper focuses on the evolution of the tendon routing; from the LMS hand to the new RoBioSS dexterous hand. The motion transmission in the new design creates purely linear coupling relations between joints and actuators. Experimental results using the same protocol for the previous hand and the new hand illustrate the evolution in the quality of the mechanical design. With the improvements of the mechanical behavior of the robotic fingers, the hand control software could be extensively simplified. The choice of a common architecture for all fingers makes it possible to consider the hand as a collaboration of four serial robots. Moreover, with the transparency of the motor-joint transmissions, we could use robust, industrial-grade cascaded feedback loops for the axis controls.An inside-hand manipulation task concerning the manipulation of a bottle cap is presented at the end of the paper. As proof of the robustness of the hand, demonstrations of the hand's capabilities were carried out continuously over three days at SPS IPC Drives international exhibition in Nuremberg, in November 2016.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Wataru Fukui ◽  
Futoshi Kobayashi ◽  
Fumio Kojima ◽  
Hiroyuki Nakamoto ◽  
Nobuaki Imamura ◽  
...  

We have developed a universal robot hand with tactile and other sensors. An array-type tactile sensor is crucial for dexterous manipulation of objects using a robotic hand, since this sensor can measure the pressure distribution on finger pads. The sensor has a very high resolution, and the shape of a grasped object can be classified by using this sensor. The more the number of measurement points provided, the higher the accuracy of the classification, but with a corresponding lengthening of the measurement cycle. In this paper, the problem of slow response time is resolved by using software for an array-type tactile sensor with high resolution that emulates the human sensor system. The validity of the proposed method is demonstrated through experiments.


2000 ◽  
Author(s):  
Michael L. Turner ◽  
Ryan P. Findley ◽  
Weston B. Griffin ◽  
Mark R. Cutkosky ◽  
Daniel H. Gomez

Abstract This paper describes the development of a system for dexterous telemanipulation and presents the results of tests involving simple manipulation tasks. The user wears an instrumented glove augmented with an arm-grounded haptic feedback apparatus. A linkage attached to the user’s wrist measures gross motions of the arm. The movements of the user are transferred to a two fingered dexterous robot hand mounted on the end of a 4-DOF industrial robot arm. Forces measured at the robot fingers can be transmitted back to the user via the haptic feedback apparatus. The results obtained in block-stacking and object-rolling experiments indicate that the addition of force feedback to the user did not improve the speed of task execution. In fact, in some cases the presence of incomplete force information is detrimental to performance speed compared to no force information. There are indications that the presence of force feedback did aid in task learning.


Author(s):  
Mahdi Haghshenas-Jaryani ◽  
Muthu B. J. Wijesundara

This paper presents the development of a framework based on a quasi-statics concept for modeling and analyzing the physical human-robot interaction in soft robotic hand exoskeletons used for rehabilitation and human performance augmentation. This framework provides both forward and inverse quasi-static formulations for the interaction between a soft robotic digit and a human finger which can be used for the calculation of angular motions, interaction forces, actuation torques, and stiffness at human joints. This is achieved by decoupling the dynamics of the soft robotic digit and the human finger with similar interaction forces acting on both sides. The presented theoretical models were validated by a series of numerical simulations based on a finite element model which replicates similar human-robot interaction. The comparison of the results obtained for the angular motion, interaction forces, and the estimated stiffness at the joints indicates the accuracy and effectiveness of the quasi-static models for predicting the human-robot interaction.


Author(s):  
Thomas E. Pillsbury ◽  
Ryan M. Robinson ◽  
Norman M. Wereley

Pneumatic artificial muscles (PAMs) are used in robotics applications for their light-weight design and superior static performance. Additional PAM benefits are high specific work, high force density, simple design, and long fatigue life. Previous use of PAMs in robotics research has focused on using “large,” full-scale PAMs as actuators. Large PAMs work well for applications with large working volumes that require high force and torque outputs, such as robotic arms. However, in the case of a compact robotic hand, a large number of degrees of freedom are required. A human hand has 35 muscles, so for similar functionality, a robot hand needs a similar number of actuators that must fit in a small volume. Therefore, using full scale PAMs to actuate a robot hand requires a large volume which for robotics and prosthetics applications is not feasible, and smaller actuators, such as miniature PAMs, must be used. In order to develop a miniature PAM capable of producing the forces and contractions needed in a robotic hand, different braid and bladder material combinations were characterized to determine the load stroke profiles. Through this characterization, miniature PAMs were shown to have comparably high force density with the benefit of reduced actuator volume when compared to full scale PAMs. Testing also showed that braid-bladder interactions have an important effect at this scale, which cannot be modeled sufficiently using existing methods without resorting to a higher-order constitutive relationship. Due to the model inaccuracies and the limited selection of commercially available materials at this scale, custom molded bladders were created. PAMs created with these thin, soft bladders exhibited greatly improved performance.


Author(s):  
Eun-Hye Kim ◽  
Seok-Won Lee ◽  
Yong-Kwun Lee

Robotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 81
Author(s):  
Santiago T. Puente ◽  
Lucía Más ◽  
Fernando Torres ◽  
and Francisco A. Candelas

This article presents a multiplatform application for the tele-operation of a robot hand using virtualization in Unity 3D. This approach grants usability to users that need to control a robotic hand, allowing supervision in a collaborative way. This paper focuses on a user application designed for the 3D virtualization of a robotic hand and the tele-operation architecture. The designed system allows for the simulation of any robotic hand. It has been tested with the virtualization of the four-fingered Allegro Hand of SimLab with 16 degrees of freedom, and the Shadow hand with 24 degrees of freedom. The system allows for the control of the position of each finger by means of joint and Cartesian co-ordinates. All user control interfaces are designed using Unity 3D, such that a multiplatform philosophy is achieved. The server side allows the user application to connect to a ROS (Robot Operating System) server through a TCP/IP socket, to control a real hand or to share a simulation of it among several users. If a real robot hand is used, real-time control and feedback of all the joints of the hand is communicated to the set of users. Finally, the system has been tested with a set of users with satisfactory results.


Sign in / Sign up

Export Citation Format

Share Document