Hovering Control of Outdoor Blimp Robots Based on Path Following

2011 ◽  
Vol 23 (2) ◽  
pp. 207-214 ◽  
Author(s):  
Hitomu Saiki ◽  
◽  
Takanori Fukao ◽  
Takateru Urakubo ◽  
Takashi Kohno ◽  
...  

After large-scale disasters, a surveillance system is required to gather information about the stricken area safely and quickly. An autonomous blimp is the best option for this purpose. This paper proposes a control design method for automatic hovering of outdoor blimp robots under strong winds by a path-following approach. The method consists of inverse optimal path-following control in the horizontal plane and Proportional-Integral-Derivative (PID) control for altitude and pitching motion of the blimp in the longitudinal plane. Some simulations and experiments for a 12m class outdoor blimp are performed to confirm the usefulness of the proposed method.

Author(s):  
Yun-Ping Sun ◽  
Yen-Chu Liang

Industry 4.0 accelerates the growth of unmanned technology that reduces the labor cost and creates high automation in manufacturing system. The automated guided vehicle which is capable of transferring materials or executing tasks without human intervention becomes a necessary system for modern unmanned factories. The study explores the guidance and control design to accomplish the common task of path-following control for unmanned ground vehicles (UGV). A complete design method is presented that includes the lateral-directional autopilot, the vector field guidance for path-following, and multi-sensor fusion. The lateral-directional autopilot produces the low-level control action, the higher level guidance indicates the course direction of UGV at every spatial point based on the lateral path error, and the accurate UGV position relies on the estimate obtained by dynamically fusing sensors with extended Kalman filter. The design parameters in every stage are analyzed theoretically first and then fine-tuned in practice. The process is clearly described in this study, and the field test results are discussed in details to verify the performance of the proposed method and demonstrate the superiority over others.


Author(s):  
Takao Sato ◽  
Toru Yamamoto ◽  
Nozomu Araki ◽  
Yasuo Konishi

In the present paper, we discuss a new design method for a proportional-integral-derivative (PID) control system using a model predictive approach. The PID compensator is designed based on generalized predictive control (GPC). The PID parameters are adaptively updated such that the control performance is improved because the design parameters of GPC are selected automatically in order to attain a user-specified control performance. In the proposed scheme, the estimated plant parameters are updated only when the prediction error increases. Therefore, the control system is not updated frequently. The control system is updated only when the control performance is sufficiently improved. The effectiveness of the proposed method is demonstrated numerically. Finally, the proposed method is applied to a weigh feeder, and experimental results are presented.


Author(s):  
Xian Hong Li ◽  
Hai Bin Yu ◽  
Ming Zhe Yuan ◽  
Chuan Zhi Zang ◽  
Zhuo Wang

This paper focuses on the design method of the optimal multiple inputs and multiple outputs (MIMO) proportional integral derivative (PID) controllers for the MIMO processes via using Lyapunov theorems. A hybrid augmented integral squared error (HAISE) is applied to design the optimal multi-loop PID controller for the MIMO plants. The optimal multi-loop PID control problem is transformed into a nonlinear constraint optimization (NLCO) problem. The optimal PID controller parameters are obtained from solving the NLCO problem. The design method is applied to devise the multi-loop optimal PID controller for different types of MIMO plants and the optimal PID controller under different control weight is shown in this paper. The performances of different PID tuning methods are studied too. The computer simulation results are presented to demonstrate the effectiveness of the design method and good performance and robustness of the optimal multi-loop PID controllers.


2010 ◽  
Vol 459 ◽  
pp. 211-220 ◽  
Author(s):  
Takaaki Hagiwara ◽  
Kou Yamada ◽  
Iwanori Murakami ◽  
Yoshinori Ando ◽  
Shun Matsuura

PID(Proportional-Integral-Derivative) controller structure is the most widely used one in industrial applications. Yamada and Hagiwara proposed a design method for modified PID controllers such that modified PID controllers make the control system for unstable plants stable and the admissible sets of P-parameter, I-parameter and D-parameter are independent from each other. When modified PID control systems are applied to real plants, the influence of disturbance in the plant must be considered. In many cases, disturbance in the plant is unknown. It is comparatively easy to attenuate known disturbance, but it is difficult to attenuate unknown disturbances. From a practical viewpoint, it is desirable to design a modified PID control system to attenuate unknown disturbances. However, no paper examines a design method for modified PID control systems to attenuate unknown disturbances. In this paper, we propose a design method for modified PID control systems to attenuate unknown disturbances.


Author(s):  
So-Ryeok Oh ◽  
Jing Sun ◽  
Zhen Li

This paper considers the path following problem of underactuated marine vessels whose control imposes a challenging problem due to its under-actuated nature. The recently developed Dynamic Surface Control (DSC) design method is applied to overcome the problem of explosion of terms associated with the backstepping design procedure. We show that the exponential stability of the resulting closed loop dynamics can be proved using Lyapunov direct method. The feasibility of the proposed Dynamic Surface Controller is evaluated analytically and verified through computer simulations and experiments.


Sign in / Sign up

Export Citation Format

Share Document