A Design Method for Modified PID Control Systems to Attenuate Unknown Disturbances

2010 ◽  
Vol 459 ◽  
pp. 211-220 ◽  
Author(s):  
Takaaki Hagiwara ◽  
Kou Yamada ◽  
Iwanori Murakami ◽  
Yoshinori Ando ◽  
Shun Matsuura

PID(Proportional-Integral-Derivative) controller structure is the most widely used one in industrial applications. Yamada and Hagiwara proposed a design method for modified PID controllers such that modified PID controllers make the control system for unstable plants stable and the admissible sets of P-parameter, I-parameter and D-parameter are independent from each other. When modified PID control systems are applied to real plants, the influence of disturbance in the plant must be considered. In many cases, disturbance in the plant is unknown. It is comparatively easy to attenuate known disturbance, but it is difficult to attenuate unknown disturbances. From a practical viewpoint, it is desirable to design a modified PID control system to attenuate unknown disturbances. However, no paper examines a design method for modified PID control systems to attenuate unknown disturbances. In this paper, we propose a design method for modified PID control systems to attenuate unknown disturbances.


2010 ◽  
Vol 4 (5) ◽  
pp. 469-476
Author(s):  
Takaaki Hagiwara ◽  
◽  
Kou Yamada ◽  
Iwanori Murakami ◽  
Yoshinori Ando ◽  
...  

The Proportional-Integral-Derivative (PID) controller structure is the most widely used in industrial applications thanks to its structural simplicity and applicability in solving practical control problems. It is not, however, almighty. Yamada and Hagiwara proposed design modified PID controllers to make control for any plant stable and make admissible sets of P, I, and D parameters mutually independent. Applying modified PID control to practical plants requires that the influence of disturbance in the plant be considered. In many cases, this disturbance is unknown, making it difficulty to attenuate. Although designs have been proposed for modified PID control to attenuate unknown disturbances, little has been done in examining the attenuation of unknown disturbances. We demonstrate the effectiveness of modified PID control in attenuating unknown disturbances for temperature control in heat flow experiments.



Author(s):  
Takao Sato ◽  
Toru Yamamoto ◽  
Nozomu Araki ◽  
Yasuo Konishi

In the present paper, we discuss a new design method for a proportional-integral-derivative (PID) control system using a model predictive approach. The PID compensator is designed based on generalized predictive control (GPC). The PID parameters are adaptively updated such that the control performance is improved because the design parameters of GPC are selected automatically in order to attain a user-specified control performance. In the proposed scheme, the estimated plant parameters are updated only when the prediction error increases. Therefore, the control system is not updated frequently. The control system is updated only when the control performance is sufficiently improved. The effectiveness of the proposed method is demonstrated numerically. Finally, the proposed method is applied to a weigh feeder, and experimental results are presented.



Author(s):  
Xian Hong Li ◽  
Hai Bin Yu ◽  
Ming Zhe Yuan ◽  
Chuan Zhi Zang ◽  
Zhuo Wang

This paper focuses on the design method of the optimal multiple inputs and multiple outputs (MIMO) proportional integral derivative (PID) controllers for the MIMO processes via using Lyapunov theorems. A hybrid augmented integral squared error (HAISE) is applied to design the optimal multi-loop PID controller for the MIMO plants. The optimal multi-loop PID control problem is transformed into a nonlinear constraint optimization (NLCO) problem. The optimal PID controller parameters are obtained from solving the NLCO problem. The design method is applied to devise the multi-loop optimal PID controller for different types of MIMO plants and the optimal PID controller under different control weight is shown in this paper. The performances of different PID tuning methods are studied too. The computer simulation results are presented to demonstrate the effectiveness of the design method and good performance and robustness of the optimal multi-loop PID controllers.





2013 ◽  
Vol 846-847 ◽  
pp. 313-316 ◽  
Author(s):  
Xiao Yun Zhang

This paper presented a new method based on the Fuzzy self - adaptive PID for BLDCM. This method overcomes some defects of the traditional PID control. Such as lower control precision and worse anti - jamming performance. It dynamic model of BLDCM was built, and then design method for TS fuzzy PID model is given, At last, it compared simulation results of PID control method with TS Fuzzy PID control method. The results show that the TS Fuzzy PID control method has more excellent dynamic antistatic performances, as well as anti-jamming performance. The experiment shows that TS fuzzy PID control has the stronger adaptability robustness and transplant.



Author(s):  
Takanori Emaru ◽  
Kazuo Imagawa ◽  
Yohei Hoshino ◽  
Yukinori Kobayashi

Proportional-Integral-Derivative (PID) control has been most commonly used to operate mechanical systems. In PID control, however, there are limits to the accuracy of the resulting movement because of the influence of gravity, friction, and interaction of joints. We have proposed a digital acceleration control (DAC) that is robust over these modeling errors. One of the most practicable advantages of DAC is robustness against modeling errors. However, it does not always work effectively. If there are modeling errors in the inertia term of the model, the DAC controller cannot control a mechanical system properly. Generally an inertia term is easily modeled in advance, but it has a possibility to change. Therefore, we propose an online estimation method of an inertia term by using a system identification method. By using the proposed method, the robustness of DAC is considerably improved. This paper shows the simulation results of the proposed method using 2-link manipulator.



2019 ◽  
Vol 52 (7-8) ◽  
pp. 1017-1028
Author(s):  
Tufan Dogruer ◽  
Nusret Tan

This paper presents a controller design method using lead and lag controllers for fractional-order control systems. In the presented method, it is aimed to minimize the error in the control system and to obtain controller parameters parametrically. The error occurring in the system can be minimized by integral performance criteria. The lead and lag controllers have three parameters that need to be calculated. These parameters can be determined by the simulation model created in the Matlab environment. In this study, the fractional-order system in the model was performed using Matsuda’s fourth-order integer approximation. In the optimization model, the error is minimized by using the integral performance criteria, and the controller parameters are obtained for the minimum error values. The results show that the presented method gives good step responses for lead and lag controllers.



Sign in / Sign up

Export Citation Format

Share Document