Swarm Robotic Systems Based on Collective Behavior of Chloroplasts

2017 ◽  
Vol 29 (3) ◽  
pp. 602-612 ◽  
Author(s):  
Satoshi Hoshino ◽  
◽  
Ryo Takisawa ◽  
Yutaka Kodama ◽  

[abstFig src='/00290003/15.jpg' width='300' text='Swarming chloroplastic robots around light source' ] In this paper, distributed autonomous robots are used to perform area coverage tasks. In order for robots to cover the ground surface of environments, the coordination of a team of robots is a challenge. For this challenge, we present bio-inspired swarm robotic systems. We focus on the collective behavior of chloroplasts toward a light source. On the basis of the mechanism of the chloroplast, we propose robot behavior models that do not use local communication. The emergence of cooperative behavior through the interaction among the swarming robots is a main contribution of this paper. Based on simulation results, the effectiveness of the chloroplastic robots for the coverage task is discussed in terms of flexibility and scalability. Furthermore, the behavioral models are applied to actual mobile robots. Based on the results of experiments, the applicability of the chloroplastic robots to real environments is discussed. As an application of the swarm robotic system, a specific task, sweeping, is given to actual chloroplastic robots.

Author(s):  
YongAn LI

Background: The symbolic nodal analysis acts as a pivotal part of the very large scale integration (VLSI) design. Methods: In this work, based on the terminal relations for the pathological elements and the voltage differencing inverting buffered amplifier (VDIBA), twelve alternative pathological models for the VDIBA are presented. Moreover, the proposed models are applied to the VDIBA-based second-order filter and oscillator so as to simplify the circuit analysis. Results: The result shows that the behavioral models for the VDIBA are systematic, effective and powerful in the symbolic nodal circuit analysis.</P>


2021 ◽  
Vol 10 (3) ◽  
pp. 1-31
Author(s):  
Zhao Han ◽  
Daniel Giger ◽  
Jordan Allspaw ◽  
Michael S. Lee ◽  
Henny Admoni ◽  
...  

As autonomous robots continue to be deployed near people, robots need to be able to explain their actions. In this article, we focus on organizing and representing complex tasks in a way that makes them readily explainable. Many actions consist of sub-actions, each of which may have several sub-actions of their own, and the robot must be able to represent these complex actions before it can explain them. To generate explanations for robot behavior, we propose using Behavior Trees (BTs), which are a powerful and rich tool for robot task specification and execution. However, for BTs to be used for robot explanations, their free-form, static structure must be adapted. In this work, we add structure to previously free-form BTs by framing them as a set of semantic sets {goal, subgoals, steps, actions} and subsequently build explanation generation algorithms that answer questions seeking causal information about robot behavior. We make BTs less static with an algorithm that inserts a subgoal that satisfies all dependencies. We evaluate our BTs for robot explanation generation in two domains: a kitting task to assemble a gearbox, and a taxi simulation. Code for the behavior trees (in XML) and all the algorithms is available at github.com/uml-robotics/robot-explanation-BTs.


1979 ◽  
Vol 88 (6) ◽  
pp. 771-773 ◽  
Author(s):  
Benjamin Chen ◽  
Terry L. Fry ◽  
Newton D. Fischer

A new hand-held otoscope photographic system, convenient and suitable for clinical application, is introduced. This instrument allows clear otoscopic examination in stenotic or tortuous ear canals, and photographs the subject in one procedure. The instrument consists of a rodlens optical system, a fiberoptic light source, a camera, and exchangeable speculum and a strobe light. Color photographs of tympanic membranes and middle ear pathology are presented.


2021 ◽  
Vol 22 (11) ◽  
pp. 563-566
Author(s):  
V. V. Serebrennyj ◽  
A. A. Boshlyakov ◽  
A. S. Yuschenko

This year we celebrate the 70-th year of the chair founded in BMSTU in 1951 which name today is "Robotic Systems and Mechatronics". Evolution of the chair during the last 70 years is completely reflected the technical progress in the field of automation. From automatic drives to autonomous robots. Again with the improvement of the educational programs in accordance with the vital demands the chair managed to keep the basic traditions of the Russian engineering school based on the combination of the fundamental scientific background with the practical competence in the new technical systems design. The prominent scientists and engineers made a major contribution to the content and methods of training of future specialists in robotics and mechatronics which are acknowledged both in Russia and abroad. Nowadays robotics is transforming from perspective direction to urgent needs. The chair "Robotic Systems and Mechatronics" is completely ready to reply the new challenge of time.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242607
Author(s):  
Yutaka Horita

Reciprocity toward a partner’s cooperation is a fundamental behavioral strategy underlying human cooperation not only in interactions with familiar persons but also with strangers. However, a strategy that takes into account not only one’s partner’s previous action but also one’s own previous action—such as a win-stay lose-shift strategy or variants of reinforcement learning—has also been considered an advantageous strategy. This study investigated empirically how behavioral models can be used to explain the variances in cooperative behavior among people. To do this, we considered games involving either direct reciprocity (an iterated prisoner’s dilemma) or generalized reciprocity (a gift-giving game). Multilevel models incorporating inter-individual behavioral differences were fitted to experimental data using Bayesian inference. The results indicate that for these two types of games, a model that considers both one’s own and one’s partner’s previous actions fits the empirical data better than the other models. In the direct reciprocity game, mutual cooperation or defection—rather than relying solely on one’s partner’s previous actions—affected the increase or decrease, respectively, in subsequent cooperation. Whereas in the generalized reciprocity game, a weaker effect of mutual cooperation or defection on subsequent cooperation was observed.


Author(s):  
Muhammed Oguz Tas ◽  
Ugur Yayan ◽  
Hasan Serhan Yavuz ◽  
Ahmet Yazici

Robotic systems are used many areas where it is dangerous or difficult for people to do. The importance of autonomous robots increased with the Industry 4.0, and the concept of reliability needed more attention for long term operability of robotic systems. In this study, reliability based task allocation analysis is performed for robots by using fuzzy logic. With the help of fuzzy inference system, the result of reliability based task allocation are obtained using the amount of carried load and load carrying distances. In the study, cases of task allocation based on nearest and reliability were analyzed and compared. Experimental results showed that, the system reliability that occurs with reliability based task allocation is higher than the system reliability that occurs with nearest based task allocation.


2019 ◽  
pp. 649-662
Author(s):  
Ning Gui ◽  
Vincenzo De Florio ◽  
Chris Blondia

Autonomous Robots normally perform tasks in unstructured environments, with little or no continuous human guidance. This calls for context-aware, self-adaptive software systems. This paper aims at providing a flexible adaptive middleware platform to seamlessly integrate multiple adaptation logics during the run-time. To support such an approach, a reconfigurable middleware system “ACCADA” was designed to provide compositional adaptation. During the run-time, context knowledge is used to select the most appropriate adaptation modules so as to compose an adaptive system best-matching the current exogenous and endogenous conditions. Together with a structure modeler, this allows robotic applications' structure to be autonomously (re)-constructed and (re)-configured. This paper applies this model on a Lego NXT robot system. A remote NXT model is designed to wrap and expose native NXT devices into service components that can be managed during the run-time. A dynamic UI is implemented which can be changed and customized according to system conditions. Results show that the framework changes robot adaptation behavior during the run-time.


1970 ◽  
Vol 92 (2) ◽  
pp. 288-292
Author(s):  
D. R. Borchardt ◽  
R. S. Witte

In January of 1969 under contract to the Naval Civil Engineering Laboratories (NCEL), TRW delivered to Project TEKTITE an underwater surveying system which utilized a portable, pulsed ion, argon gas laser as the reference light source. The intent of the system was to demonstrate the feasibility of conducting standard surveying operations by constructing several different size rectangles on the floor of the ocean and measuring the contours in the area of these rectangles. In addition, the actual location of the laser and the orientation of the rectangular plot was to be accurately located relative to reference points on a shoreline considered inaccessible to the divers. The Underwater Laser Surveying System (ULSS) has successfully met or exceeded all design objectives.


Sign in / Sign up

Export Citation Format

Share Document