scholarly journals Easy-Riding Compact Electric Shopping Vehicle

2021 ◽  
Vol 33 (5) ◽  
pp. 1178-1189
Author(s):  
Takeharu Hayashi ◽  
Yoshihiko Takahashi ◽  
Satoru Yamaguchi ◽  
◽  

We are developing a small compact electric vehicle for shopping purposes. In this study, we fabricated an experimental vehicle, that uses only six small rechargeable AA batteries (7.2 V, approximately 2 A·h) as an electric power source. The vehicle user can select between two driving positions: standing and sitting. A compact transmission with a 90-W DC motor and a speed controller that uses pulse width modulation control was designed as an actuating system. Running experiments were conducted to observe the performance of the fabricated vehicle on a flat floor in a gymnasium. The fabricated vehicle was able to operate for 52 min at a speed of 2.73 km/h. The getting-on and getting-off processes in the vehicle were repeated many times during shopping. The human leg strain while getting on and off the vehicle was investigated by electromyogram measurement. During the getting-on and getting-off processes in the vehicle, the myoelectric potential of the quadriceps increased in the sitting position but did not increase in the standing position. The experimental results show that a user suffers more strain in the sitting position than in the standing position.

Author(s):  
Mohamed Dahbi ◽  
Said Doubabi ◽  
Ahmed Rachid ◽  
Driss Oulad-Abbou

In this article, a new control strategy for electric vehicle battery autonomy and performance improvements is proposed. This method is based on the use of a DC-DC converter combined with a brushless DC motor as an electric vehicle propulsion engine. First, an analysis of the three-phase brushless DC motor performance based on analytical modeling is addressed. This model stands on the derivative of the commutated and non-commutated phase currents from which the speed response is induced. The proposed model presents different brushless DC motor pulse width modulation control modes and allows highlighting the most appropriate mode with lower current ripple and power loss, higher efficiency and faster response. Furthermore, a DC-DC boost converter is integrated in the motor control scheme, to describe after, how the electric vehicle performance is increased when implementing this control mode. Evaluation of the analytic results has been validated through simulations on MATLAB/Simulink. The evaluation focuses on speed response for different pulse width modulation control modes, current ripple rate in addition to the electric vehicle performance with and without DC-DC converter. In addition, an experimental validation using a laboratory designed platform is performed. The proposed method demonstrates a better electric vehicle performance in terms of increasing the battery autonomy and speed range.


2018 ◽  
Vol 7 (3.27) ◽  
pp. 116
Author(s):  
S Reeba Rex ◽  
Mary ` Synthia Regis Praba2

This paper presents an implementation of a microcontroller based boost converter to maintain constant speed of a DC motor. The optimised values namely kp,ki,kd  of the  Boost Converter  are taken from firefly algorithm[10] and implemented using microcontroller. Pulse width modulation (PWM) is a procedure to generate changeable pulse width with different duty cycle. The PWM signal reduces the switching losses. This paper presents a DC motor speed controller where PID Controller is used where the optimized values of kp,ki,kd are taken from firefly algorithm[10]. The PWM pulse width will alter the speed of the motor.  The motor voltage and revolutions per seconds (RPS) obtained at different duty cycle rates. With increase in duty cycle, further voltage is applied to the motor. This gives stronger magnetic flux in the armature windings and to enhance revolutions per seconds. The characteristics and concert of the DC motor speed control system was discussed. In this paper, a PIC microcontroller is designed with a DC-DC boost converter for the motor speed controller system. Finally to improve the graphical result we design the hardware in loop method using matlab.  


2017 ◽  
Vol 12 (3) ◽  
pp. 379-387 ◽  
Author(s):  
Ahmad Anad Abduallah ◽  
Mohammed Meraj ◽  
Mohammed Al‐Hitmi ◽  
Atif Iqbal

2020 ◽  
Vol 34 (4) ◽  
pp. 1711-1722
Author(s):  
Qiang Gao ◽  
Yuchuan Zhu ◽  
Zhang Luo ◽  
Niyomwungeri Bruno

2010 ◽  
Vol 43 (7) ◽  
pp. 111-116
Author(s):  
James C. Peyton Jones ◽  
Kenneth. R. Muske ◽  
Robert. W. Schallock ◽  
Jevon. M. Avis

2017 ◽  
Vol 9 (11) ◽  
pp. 168781401773324 ◽  
Author(s):  
Qi Zhong ◽  
Bin Zhang ◽  
Hua-Yong Yang ◽  
Ji-En Ma ◽  
Rong-Fong Fung

Author(s):  
Cosmas Tatenda Katsambe ◽  
Vinukumar Luckose ◽  
Nurul Shahrizan Shahabuddin

Pulse width modulation (PWM) is used to generate pulses with variable duty cycle rate. The rapid rising and falling edges of PWM signal minimises the switching transition time and the associated switching losses. This paper presents a DC motor speed controller system using PWM technique. The PWM duty cycle is used to vary the speed of the motor by controlling the motor terminal voltage.The motor voltage and revolutions per minutes (RPM) obtained at different duty cycle rates. As the duty cycle increases, more voltage is applied to the motor. This contributes to the stronger magnetic flux inside the armature windings and the increasethe RPM. The characteristics and performance of the DC motor speed control system was investigated. In this paper, a PIC microcontroller and a DC-DC buck converter are employed in the DC motor speed controller system circuit. The microcontroller provides flexibility to the circuit by incorporating two push button switches in order to increase and to decrease the duty cycle rate. The characteristics and performance of the motor speed controller system using microcontroller was examined at different duty cycle rate ranging from 19% to 99%.


2015 ◽  
Vol 8 (5) ◽  
pp. 708-714 ◽  
Author(s):  
Enric Vidal‐Idiarte ◽  
Adria Marcos‐Pastor ◽  
Germain Garcia ◽  
Angel Cid‐Pastor ◽  
Luis Martinez‐Salamero

Sign in / Sign up

Export Citation Format

Share Document