scholarly journals Spread Spectrum Sound with TDMA and INS Hybrid Navigation System for Indoor Environment

2021 ◽  
Vol 33 (6) ◽  
pp. 1315-1325
Author(s):  
Romprakhun Tientadakul ◽  
Hiroaki Nakanishi ◽  
Tomoo Shiigi ◽  
Zichen Huang ◽  
Lok Wai Jacky Tsay ◽  
...  

Indoor navigation plays an essential role in agricultural robots that operate in greenhouses. One of the most effective methods for indoor navigation is the spread spectrum sound (SS-sound) system. In this system, the time of arrival (ToA) of the spread spectrum modulated sound is used for localization. However, there is a near-far problem. Transmitting the SS-sound from multiple anchors using time division multiple access (TDMA) is adequate to solve the near-far problem. However, localization is impossible because the ToA from multiple anchors cannot be simultaneously acquired. To solve this problem, a method for combining the SS-sound system with TDMA and an inertial navigation system is proposed in this study. The effectiveness of the proposed method was demonstrated through numerical simulations of a ground robot and experimentally using a crawler robot.

Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6238
Author(s):  
Payal Mahida ◽  
Seyed Shahrestani ◽  
Hon Cheung

Wayfinding and navigation can present substantial challenges to visually impaired (VI) people. Some of the significant aspects of these challenges arise from the difficulty of knowing the location of a moving person with enough accuracy. Positioning and localization in indoor environments require unique solutions. Furthermore, positioning is one of the critical aspects of any navigation system that can assist a VI person with their independent movement. The other essential features of a typical indoor navigation system include pathfinding, obstacle avoidance, and capabilities for user interaction. This work focuses on the positioning of a VI person with enough precision for their use in indoor navigation. We aim to achieve this by utilizing only the capabilities of a typical smartphone. More specifically, our proposed approach is based on the use of the accelerometer, gyroscope, and magnetometer of a smartphone. We consider the indoor environment to be divided into microcells, with the vertex of each microcell being assigned two-dimensional local coordinates. A regression-based analysis is used to train a multilayer perceptron neural network to map the inertial sensor measurements to the coordinates of the vertex of the microcell corresponding to the position of the smartphone. In order to test our proposed solution, we used IPIN2016, a publicly-available multivariate dataset that divides the indoor environment into cells tagged with the inertial sensor data of a smartphone, in order to generate the training and validating sets. Our experiments show that our proposed approach can achieve a remarkable prediction accuracy of more than 94%, with a 0.65 m positioning error.


2016 ◽  
Vol 817 ◽  
pp. 308-316 ◽  
Author(s):  
Piotr Rajchowski ◽  
Krzysztof Cwalina ◽  
Jarosław Sadowski

In the article the research and analysis of digital signal processing and its influence on accuracy of location estimation in developed inertial navigation system was presented. The purpose of the system is to localize moving people in indoor environment. During research a measuring unit for recording selected movement parameters was made. In the article were also described author’s inertial navigation algorithms.


Indoor Navigation system is gaining lot of importance these days. It is particularly important to locate places inside a large university campus, Airport, Railway station or Museum. There are many mobile applications developed recently using different techniques. The work proposed in this paper is focusing on the need of visually challenged people while navigating in indoor environment. The approach proposed here implements the system using Beacon. The application developed with the system gives audio guidance to the user for navigation.


Author(s):  
Y. C. Lai ◽  
C. C. Chang ◽  
C. M. Tsai ◽  
S. Y. Lin ◽  
S. C. Huang

This paper presents a pedestrian indoor navigation system based on the multi-sensor fusion and fuzzy logic estimation algorithms. The proposed navigation system is a self-contained dead reckoning navigation that means no other outside signal is demanded. In order to achieve the self-contained capability, a portable and wearable inertial measure unit (IMU) has been developed. Its adopted sensors are the low-cost inertial sensors, accelerometer and gyroscope, based on the micro electro-mechanical system (MEMS). There are two types of the IMU modules, handheld and waist-mounted. The low-cost MEMS sensors suffer from various errors due to the results of manufacturing imperfections and other effects. Therefore, a sensor calibration procedure based on the scalar calibration and the least squares methods has been induced in this study to improve the accuracy of the inertial sensors. With the calibrated data acquired from the inertial sensors, the step length and strength of the pedestrian are estimated by multi-sensor fusion and fuzzy logic estimation algorithms. The developed multi-sensor fusion algorithm provides the amount of the walking steps and the strength of each steps in real-time. Consequently, the estimated walking amount and strength per step are taken into the proposed fuzzy logic estimation algorithm to estimates the step lengths of the user. Since the walking length and direction are both the required information of the dead reckoning navigation, the walking direction is calculated by integrating the angular rate acquired by the gyroscope of the developed IMU module. Both the walking length and direction are calculated on the IMU module and transmit to a smartphone with Bluetooth to perform the dead reckoning navigation which is run on a self-developed APP. Due to the error accumulating of dead reckoning navigation, a particle filter and a pre-loaded map of indoor environment have been applied to the APP of the proposed navigation system to extend its usability. The experiment results of the proposed navigation system demonstrate good navigation performance in indoor environment with the accurate initial location and direction.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8228
Author(s):  
Yunbing Hu ◽  
Ao Peng ◽  
Biyu Tang ◽  
Hongying Xu

The inertial navigation system has high short-term positioning accuracy but features cumulative error. Although no cumulative error occurs in WiFi fingerprint localization, mismatching is common. A popular technique thus involves integrating an inertial navigation system with WiFi fingerprint matching. The particle filter uses dead reckoning as the state transfer equation and the difference between inertial navigation and WiFi fingerprint matching as the observation equation. Floor map information is introduced to detect whether particles cross the wall; if so, the weight is set to zero. For particles that do not cross the wall, considering the distance between current and historical particles, an adaptive particle filter is proposed. The adaptive factor increases the weight of highly trusted particles and reduces the weight of less trusted particles. This paper also proposes a multidimensional Euclidean distance algorithm to reduce WiFi fingerprint mismatching. Experimental results indicate that the proposed algorithm achieves high positioning accuracy.


Author(s):  
Mr. Dharmesh Dhabliya

The navigation of physically impaired requires a continuous positioning with certain accuracy in their environments. This paper proposes an automated wheel chair developed for the indoor navigation using Inertial Navigation System (INS) for the physically blight persons. The Wassily chairs are the mobile chairs that facilitate the movement of the user in pre-functioned places. This is an intelligent vehicle which has all the feasibility for the usage of the physically impaired. This mobile chair replaces the traditional gear system with the keypad system to reach the destined places and to locate the things in the destined places. This makes the vehicle smart and user-friendly augmenting the viability to carry out their day to day activities.  It has an additional feature, the automatic airbag system which provides hip bone protections.


Sign in / Sign up

Export Citation Format

Share Document