scholarly journals Penetration of non-uniform electromagnetic field into conducting body

Author(s):  
Yu. M. Vasetsky

The study is based on the exact analytical solution for the general conjugation problem of three-dimensional quasi-stationary field at a flat interface between dielectric and conducting media. It is determined that non-uniform electromagnetic field always decreases in depth faster than uniform field. The theoretical conclusion is confirmed by comparing the results of analytical and numerical calculations. The concept of strong skin effect is extended to the case when penetration depth is small not only compare to the characteristic body size, but also when the ratio of the penetration depth to the distance from the surface of body to the sources of the external field is small parameter. For strong skin effect in its extended interpretation, the influence of external field non-uniformity to electromagnetic field formation both at the interface between dielectric and conducting media and to the law of decrease field in conducting half-space is analyzed. It is shown, at the interface the expressions for the electric and magnetic intensities in the form of asymptotic series in addition to local field values of external sources contain their derivatives with respect to the coordinate perpendicular to the interface. The found expressions made it possible to generalize the approximate Leontovich impedance boundary condition for diffusion of non-uniform field into conducting half-space. The difference between the penetration law for the non-uniform field and the uniform one takes place in the terms of the asymptotic series proportional to the small parameter to the second power and to the second derivative with respect to the vertical coordinate from the external magnetic field intensity at the interface.

2012 ◽  
Vol 27 (15) ◽  
pp. 1250080 ◽  
Author(s):  
M. MERAD ◽  
F. ZEROUAL ◽  
M. FALEK

In this paper, we propose to solve the relativistic Klein–Gordon and Dirac equations subjected to the action of a uniform electromagnetic field with a generalized uncertainty principle in the momentum space. In both cases, the energy eigenvalues and their corresponding eigenfunctions are obtained. The limit case is then deduced for a small parameter of deformation.


1966 ◽  
Vol 21 (9) ◽  
pp. 1436-1443
Author(s):  
Joachim Seebass

Magnetoresistance leads to a change of the normal skin-effect. The electromagnetic field, periodic in time, is calculated by a successive approximation method for a half-space, the electric conductivity of which is dependent quadratically on the magnetic field. As expected results show the existence of uneven harmonics. Compared with the case without magnetoresistance, the a-c-resist-ance of some part of the half-space is altered by additional terms, which are dependent on the intensity of the current. Analogous results are given for a planar conducting layer of constant thickness.


Author(s):  
Yu. Vasetskiy ◽  
◽  
I. Kondratenko ◽  
I. Mazurenko ◽  
М. Pashchyn ◽  
...  

2017 ◽  
Vol 4 (1) ◽  
pp. 1410986
Author(s):  
T. Rouibah ◽  
A. Bayadi ◽  
N. Harid ◽  
K. Kerroum ◽  
Farrokh Aminifar

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shishir Gupta ◽  
Rishi Dwivedi ◽  
Smita Smita ◽  
Rachaita Dutta

Purpose The purpose of study to this article is to analyze the Rayleigh wave propagation in an isotropic dry sandy thermoelastic half-space. Various wave characteristics, i.e wave velocity, penetration depth and temperature have been derived and represented graphically. The generalized secular equation and classical dispersion equation of Rayleigh wave is obtained in a compact form. Design/methodology/approach The present article deals with the propagation of Rayleigh surface wave in a homogeneous, dry sandy thermoelastic half-space. The dispersion equation for the proposed model is derived in closed form and computed analytically. The velocity of Rayleigh surface wave is discussed through graphs. Phase velocity and penetration depth of generated quasi P, quasi SH wave, and thermal mode wave is computed mathematically and analyzed graphically. To illustrate the analytical developments, some particular cases are deliberated, which agrees with the classical equation of Rayleigh waves. Findings The dispersion equation of Rayleigh waves in the presence of thermal conductivity for a dry sandy thermoelastic medium has been derived. The dry sandiness parameter plays an effective role in thermoelastic media, especially with respect to the reference temperature for η = 0.6,0.8,1. The significant difference in η changes a lot in thermal parameters that are obvious from graphs. The penetration depth and phase velocity for generated quasi-wave is deduced due to the propagation of Rayleigh wave. The generalized secular equation and classical dispersion equation of Rayleigh wave is obtained in a compact form. Originality/value Rayleigh surface wave propagation in dry sandy thermoelastic medium has not been attempted so far. In the present investigation, the propagation of Rayleigh waves in dry sandy thermoelastic half-space has been considered. This study will find its applications in the design of surface acoustic wave devices, earthquake engineering structural mechanics and damages in the characterization of materials.


Sign in / Sign up

Export Citation Format

Share Document