scholarly journals Heat Engineering Test Data Obtained for the Shell-&-Tube Gas-Oil Heat Exchanger Using the Scientific Test System of the PJSC "Sumy Scientific and Industrial Association

Author(s):  
Nikolai Anatolevich Borisov ◽  
Oleg Grigorievich Golubkov ◽  
Roman Nikolaevich Sereda ◽  
Michael Udod
2014 ◽  
Vol 505-506 ◽  
pp. 281-285
Author(s):  
Ming Qiu Gao ◽  
Run Qing Guo ◽  
Rong Liang Liang

Vehicle handling and stability has effect on positive safety of automotive directly. Test system of handling and stability is built for its road test and the test variables signal can be acquired and stored synchronously. Based on MATLAB GUI, software is developed for the test data processing, so that the stored data is to be analyzed and handling and stability test result is given by the software automatically. Using the test system in paper, handling and stability road test of one domestic sedan is fulfilled and scored, which verifies the applicability of the test system and scoring software in paper.


1999 ◽  
Vol 123 (1) ◽  
pp. 219-223 ◽  
Author(s):  
Ozgen Akalin ◽  
Golam M. Newaz

A bench friction test system for piston ring and liner contact, which has high stroke length and large contact width has been used to verify the analytical mixed lubrication model presented in a companion paper (Part 1). This test system controls the speed, temperature and lubricant amount and records the friction force, loading force, crank angle signal and contact temperature data simultaneously. The effects of running speed, applied normal load, contact temperature and surface roughness on friction coefficient have been investigated for conventional cast-iron cylinder bores. Friction coefficient predictions are presented as a function of crank angle position and results are compared with bench test data. Analytical results correlated well with bench test results.


2020 ◽  
pp. 1-34
Author(s):  
Matthew Carlson ◽  
Francisco Alvarez

Abstract A new generation of Concentrating Solar Power (CSP) technologies is under development to provide dispatchable renewable power generation and reduce the levelized cost of electricity (LCOE) to 6 cents/kWh by leveraging heat transfer fluids (HTF) capable of operation at higher temperatures and coupling with higher efficiency power conversion cycles. The U.S. Department of Energy (DOE) has funded three pathways for Generation 3 CSP (Gen3CSP) technology development to leverage solid, liquid, and gaseous HTFs to transfer heat to a supercritical carbon dioxide (sCO2) Brayton cycle. This paper presents the design and off-design capabilities of a 1 MWth sCO2 test system that can provide sCO2 coolant to the primary heat exchangers (PHX) coupling the high-temperature HTFs to the sCO2 working fluid of the power cycle. This system will demonstrate design, performance, lifetime, and operability at a scale relevant to commercial CSP. A dense-phase high pressure canned motor pump is used to supply up to 5.3 kg/s of sCO2 flow to the primary heat exchanger at pressures up to 250 bar and temperatures up to 715 °C with ambient air as the ultimate heat sink. Key component requirements for this system are presented in this paper.


2012 ◽  
Vol 482-484 ◽  
pp. 421-425
Author(s):  
Jin Li ◽  
Wei Wei ◽  
Qing Dong Yan

To obtain the original characteristic of torque converter automatically and efficiently, a test automation system of torque converter is set up based on electric power cycling technology, and a test automation software is programmed by Labview language based on serial communication and technology. This test automation system realizes the load electric power recovery, test data acquisition and processing, the torque converter original characteristic curve generation, matching calculation with the engine, saving the test data and curve pictures, and the formal report generation automatically. The high efficiency and convenience of the test system are illustrated by a practical application.


2020 ◽  
Vol 35 ◽  
pp. 153331752092716
Author(s):  
Jin-Hyuck Park

Background: The mobile screening test system for mild cognitive impairment (mSTS-MCI) was developed and validated to address the low sensitivity and specificity of the Montreal Cognitive Assessment (MoCA) widely used clinically. Objective: This study was to evaluate the efficacy machine learning algorithms based on the mSTS-MCI and Korean version of MoCA. Method: In total, 103 healthy individuals and 74 patients with MCI were randomly divided into training and test data sets, respectively. The algorithm using TensorFlow was trained based on the training data set, and then its accuracy was calculated based on the test data set. The cost was calculated via logistic regression in this case. Result: Predictive power of the algorithms was higher than those of the original tests. In particular, the algorithm based on the mSTS-MCI showed the highest positive-predictive value. Conclusion: The machine learning algorithms predicting MCI showed the comparable findings with the conventional screening tools.


Author(s):  
Luis San Andrés ◽  
Keun Ryu ◽  
Tae Ho Kim

Implementation of gas foil bearings (GFBs) in microgas turbines relies on physics based computational models anchored to test data. This two-part paper presents test data and analytical results for a test rotor and GFB system operating hot. A companion paper (Part I) describes a test rotor-GFB system operating hot to 157°C rotor OD temperature, presents measurements of rotor dynamic response and temperatures in the bearings and rotor, and includes a cooling gas stream condition to manage the system temperatures. The second part briefs on a thermoelastohydrodynamic (TEHD) model for GFBs performance and presents predictions of the thermal energy transport and forced response, static and dynamic, in the tested gas foil bearing system. The model considers the heat flow from the rotor into the bearing cartridges and also the thermal expansion of the shaft and bearing cartridge and shaft centrifugal growth due to rotation. Predictions show that bearings’ ID temperatures increase linearly with rotor speed and shaft temperature. Large cooling flow rates, in excess of 100 l/min, reduce significantly the temperatures in the bearings and rotor. Predictions, agreeing well with recorded temperatures given in Part I, also reproduce the radial gradient of temperature between the hot shaft and the bearings ID, largest (37°C/mm) for the strongest cooling stream (150 l/min). The shaft thermal growth, more significant as the temperature grows, reduces the bearings operating clearances and also the minimum film thickness, in particular, at the highest rotor speed (30 krpm). A rotor finite element structural model and GFB force coefficients from the TEHD model are used to predict the test system critical speeds and damping ratios for operation at increasing shaft temperatures. In general, predictions of the rotor imbalance show good agreement with shaft motion measurements acquired during rotor speed coastdown tests. As the shaft temperature increases, the rotor peak motion amplitudes decrease and the system rigid-mode critical speed increases. The computational tool, benchmarked by the measurements, furthers the application of GFBs in high temperature oil-free rotating machinery.


2012 ◽  
Vol 490-495 ◽  
pp. 288-291
Author(s):  
Hu Li Wang ◽  
Hai Le Liu ◽  
Xian Jiang Yang ◽  
Feng Liu

With the mode of combining long distance pipeline cathodic protection method and GSM communication technology, the System realizes automatic pipeline testing and transmission of test data, and has succeeded in solving transmission of test data at the area without GSM signals.


Sign in / Sign up

Export Citation Format

Share Document