scholarly journals Analysis of Two-Stage Fuel Combustion in Multi-Fuel Boilers

Author(s):  
Vadym Dyahiliev ◽  
Olexander Yefimov ◽  
Valerii Kavertsev ◽  
Tetyana Harkusha ◽  
Bogdan Chernysh

The significant growth of industry in the second half of the 20th century led to a number of problems, one of the most important problems is the protection of the environment from pollution. The main source of air pollution is heat and power generating plants, which are based on combustion processes. The largest pollutant is thermal power plants, which burn a large volume of fossil fuel and form a corresponding amount of toxic substances, in particular nitrogen and sulfur oxides. In this paper, combustion processes with various burner devices will be considered and two fuels – natural gas, fuel oil. One of the most important tasks operation of power equipment is the development and widespread use of effective methods to reduce the formation of harmful substances and determining the optimal modes of fuel combustion, ensuring a minimum level of emissions of toxic combustion products. Two-stage fuel combustion is an effective method of reducing nitrogen oxide emissions. In two-stage combustion, one fuel burnout zone is replaced by several zones, as isolated as possible. The paper will compare several options for the implementation of two-stage combustion in the boiler. The influence of boiler load on the concentration of nitrogen oxides in the exhaust gases is analyzed. Also at two-stage combustion of fuel oil in gas-oil boilers reliability of screen surfaces of heating as a result of decrease in the maximum falling heat streams on a screen surface of heating of a copper increased.

Author(s):  
A. M. Gribkov

Thermal power plants (TPPs) burn more than 30% of the produced fuel. Also this fuel is worst in quality. This is usually either high-ash or high-moisture, often high-sulfur coal, or waste from oil refining and associated petroleum gas. If the main fuel at the plant is natural gas, then fuel oil farms are still being built to create a fuel reserve. But even if a gas-oil plant uses only a small part of fuel oil in its fuel balance, the permissible environmental impact is calculated on the maximum use of the dirtiest fuel, i.e. fuel oil. Thus, thermal power plants are either active or potential sources of nitrogen oxide emissions. PURPOSE. Development of methods for decreasing sulfur emissions without installing special desulphurization equipment in the exhaust gas path. In some cases, this is possible if the absorption capacity of the alkaline components of solid fuel ash or the dosing of slaked lime into fuel oil is used to control the permissible emission of solid particles in the absence of ash collectors on gas-and-oil boilers. The developed METHODOLOGY will allow us to trace the entire chain of necessary actions based on the fuel composition before selecting the main parameters of the proposed methods. RESULTS. The formulas for calculating the required degree of purification of combustion products are proposed. Methods decrease sulfur oxides emissions in domestic equipment using for pulverized coal boilers. Solution allows to decrease oxide emissions for boilers that burn fuel oil and do not have ash traps.


2019 ◽  
Vol 12 (1) ◽  
pp. 22-28
Author(s):  
V. Ye. Mikhailov ◽  
S. P. Kolpakov ◽  
L. A. Khomenok ◽  
N. S. Shestakov

One of the most important issues for modern domestic power industry is the creation and further widespread introduction of solid propellant energy units for super-critical steam parameters with high efficiency (43–46%) and improved environmental parameters. This will significantly reduce the use of natural gas.At the same time, one of the major drawbacks of the operation of pulverized coal power units is the need to use a significant amount of fuel oil during start-up and shutdown of boilers to stabilize the burning of the coal torch in the variable boiler operating modes.In this regard, solid fuel TPPs need to be provided with fuel oil facilities, with all the associated problems to ensure the performance (heating of fuel oil in winter), reliability and safety. All of the above problems increase both the TPP capital construction costs, and the electricity generating cost.A practical solution to the above problems at present is the use of a plasma technology for coal torch ignition based on thermochemical preparation of fuel for combustion. The materials of the developments of JSC “NPO CKTI” on application of plasmatrons in boilers of thermal power plants at metallurgical complexes of the Russian Federation are also considered.Plasma ignition systems for solid fuels in boilers were developed by Russian specialists and were introduced at a number of coal-fi red power plants in the Russian Federation, Mongolia, North Korea, and Kazakhstan. Plasma ignition of solid fuels is widely used in China for almost 30% of power boilers.The introduction of plasma-energy technologies will improve the energy efficiency of domestic solid-fuel thermal power plants and can be widely implemented in the modernization of boilers.During the construction of new TPPs, the construction of fuel oil facilities can be abandoned altogether, which will reduce the capital costs of the construction of thermal power plants, reduce the construction footprint, and increase the TPP safety.


2021 ◽  
Vol 3-4 (185-186) ◽  
pp. 109-125
Author(s):  
Myroslav Podolskyy ◽  
Dmytro Bryk ◽  
Lesia Kulchytska-Zhyhailo ◽  
Oleh Gvozdevych

An analysis of Ukraine’s sustainable development targets, in particular in the field of energy, resource management and environmental protection, are presented. It is shown that regional energetic is a determining factor for achieving the aims of sustainable development. Changes in the natural environment in Ukraine due to external (global) and internal (local) factors that are intertwined and overlapped can cause threats to socio-economic development. It is proved that in the areas of mining and industrial activity a multiple increase in emissions of pollutants into the environment are observed. The comparison confirmed the overall compliance of the structure of consumption of primary energy resources (solid fossil fuels, natural gas, nuclear fuel, oil and petroleum products, renewable energy sources) in Ukraine and in the European Union, shows a steaby trend to reduce the share of solid fuels and natural gas and increasing the shares of energy from renewable sources. For example, in Ukraine the shares in the production and cost of electricity in 2018 was: the nuclear power plants – 54.33 % and in the cost – 26.60 %, the thermal power – 35.95 and 59.52 %, the renewable energy sources – 9.6 and 13.88 %. The energy component must be given priority, as it is crucial for achieving of all other goals of sustainable development and harmonization of socio-economic progress. The paper systematizes the indicators of regional energy efficiency and proposes a dynamic model for the transition to sustainable energy development of the region.


2019 ◽  
Vol 12 (3) ◽  
pp. 27-34
Author(s):  
Алла Звягинцева ◽  
Alla Zvyaginceva ◽  
Светлана Сазонова ◽  
Svetlana Sazonova ◽  
В. Кульнева ◽  
...  

The waste generated during the operation of the thermal electric central, an energy facility, is considered. The analysis of atmospheric pollution by emissions of the Voronezh TPP-1, which uses coal as the main fuel, is carried out. A comparison is made with a thermal power plant using gas as a fuel source. The maximum allowable emission standards for pollutants generated during the use of coal are established and the excess of the MPC value by various types of emissions is shown: dioxide and nitric oxide; fuel oil and NO2 + SO2 ash; sulphurous anhydride and carbon monoxide; soot and coal ash. The size of the Sanitary Protection Zone of TPP-1 was determined. Measures aimed at reducing the negative environmental impact of such energy facilities as combined heat and power plants are proposed


2016 ◽  
Vol 92 ◽  
pp. 01038
Author(s):  
Arkadiy V. Zakharevich ◽  
Dmitriy N. Tsymbalov

Author(s):  
Yo.S. Mysak ◽  
M.F. Zayats ◽  
T.I. Rуmar

An analysis of the existing methods and schemes of heating the air by combustion products in the tailings of the heating boiler indicates that such measures provide an opportunity to increase the efficiency and reliability of power plants, as well as increase the efficiency of boiler plants. This paper considers the results of the study of the economic performance of the modernized RAH-98 boiler TGMP-314 A 300 MW on natural gas in the range of load variation of the power unit 160–260 MW and on the fuel oil in the range of load variation of the power unit 200–260 MW. Experiments were carried out at a stable mode of operation of the boiler in two stages: for the off and for the included scheme of suction environment from the seals of RAH. The average increase in the efficiency of the boiler is 0.35 % gross during operation of the boiler, both on natural gas and on fuel oil in the specified range of loads. Absorption of air in RAH for loads of the power unit 160–260 MW for the included circuitry is reduced by 7 % on average compared to the disconnected circuit. Bibl. 10, Fig. 5.


2019 ◽  
Vol 23 (Suppl. 5) ◽  
pp. 1611-1626
Author(s):  
Predrag Stefanovic ◽  
Dejan Cvetinovic ◽  
Zoran Markovic ◽  
Milic Eric ◽  
Simeon Oka ◽  
...  

Paper presents short review of research problems, applied methods for solving problems and main results obtained by the researchers in Laboratory for Thermal Engineering and Energy (LTE) of the "Vinca" Institute of Nuclear Sciences, Belgrade, Serbia dealing with pulverized coal combustion processes and technologies for reduction of pollutions problems at thermal power plants in a period since 2000. The presented results were published in numerous studies realized for different users, Ph. D., Masters, and Specialist thesis, in international and domestic scientific journals and monographs, presented at numerous international and domestic scientific conferences, etc. Presented research projects and results of applied research projects realized at pulverized coal combustion thermal power plants clearly show that LTE team was involved in key activities of rehabilitation and modernization, including implementation of best available technologies for pollution reduction at thermal power plants, in the region of South East Europe.


Sign in / Sign up

Export Citation Format

Share Document