scholarly journals MAIN WORKS OF PROFESSOR YA. M. MAYER (A REVIEW)

Author(s):  
Sergej Nazarenko ◽  
Mykola А. Tkachuk ◽  
Svitlana Marusenko

The article is devoted to an overview of the scientific and pedagogical activities of a prominent scientist in the field of engine building and mechanical engineering, one of the organizers of the higher school of Ukraine, a public figure, Professor Ya. M. Mayer. In the biographical work, the first study of complex life path and versatile creative heritage of the last rector of Kharkiv Technological Institute, the founder and director of the Ukrainian Research Institute of Internal Combustion Engines, director and scientific leader of the Ukrainian Research Aviation Diesel Institute, one of the creators of the famous V-2 diesel engine, one of the heads of the department «Theory of Mechanisms and Machines» Yakov Moiseevich Mayer. Keywords: engine; engineering science; higher technical education; Ya. M. Mayer; KhPI; scientific school; SE “KhKBD”; diesel

2021 ◽  
Vol 1 (3) ◽  
pp. 70-75
Author(s):  
S.A. Plotnikov ◽  
◽  
D.G. Sergeyev ◽  
M.V. Smol'nikov ◽  
A.I. Shipin ◽  
...  

Local types of fuels occupy 33.6% in the fuel balance of the Kirov region. The share of con-sumption of local fuels in the region is one of the highest in Russia. The Vyatka State University (VyatSU) in cooperation with the Belarusian State Agricultural Academy (BSAA) carry out the tests of the operation of automotive diesel engines on fuels with rapeseed oil (RO) and ethanol (E) additives, and spark internal combustion engines with generator gas (GG) additives. A new area of work of the scientific school is the study of the use of multicom-ponent compositions of biofuel compositions (MKBTK-15 and MKBTK-25). The use of such com-positions as a fuel compensates some of their distinctive properties for further use in internal com-bustion engines without changing the design and adjustments. The use of alternative fuels (AF) in internal combustion engines is a main topic for research. However, the use of any AF requires that the environmental indicators of the engine remain within acceptable limits. An important task is to determine the dependences of the emissions of toxic com-ponents on the load. The use of MKBTK-15 and MKBTK-25 as AF for engines will improve the environmental sit-uation in the region and reduce the need for commercial fuel. The operation of a diesel engine on multicomponent biofuel compositions makes it possible to reduce the smoke content of exhaust gases by 65% and 85%, the content of total nitrogen oxides remains at the same level or slightly decreases. There is a slight increase in the content of carbon dioxide СО2 up to 22.3%, but the solutions to this problem are already known. One of the ways is to preserve and increase boreal forests, which have great potential for absorbing greenhouse gases.


2015 ◽  
Vol 787 ◽  
pp. 687-691
Author(s):  
Tarigonda Hari Prasad ◽  
R. Meenakshi Reddy ◽  
P. Mallikarjuna Rao

Fossil fuels are exhausting quickly because of incremental utilization rate due to increase population and essential comforts on par with civilization. In this connection, the conventional fuels especially petrol and diesel for internal combustion engines, are getting exhausted at an alarming rate. In order to plan for survival of technology in future it is necessary to plan for alternate fuels. Further, these fossil fuels cause serious environmental problems as they release toxic gases into the atmosphere at high temperatures and concentrations. The predicted global energy consumption is increasing at faster rate. In view of this and many other related issues, these fuels will have to be replaced completely or partially by less harmful alternative, eco-friendly and renewable source fuels for the internal combustion engines. Hence, throughout the world, lot of research work is in progress pertaining to suitability and feasibility of alternative fuels. Biodiesel is one of the promising sources of energy to mitigate both the serious problems of the society viz., depletion of fossil fuels and environmental pollution. In the present work, experiments are carried out on a Single cylinder diesel engine which is commonly used in agricultural sector. Experiments are conducted by fuelling the diesel engine with bio-diesel with LPG through inlet manifold. The engine is properly modified to operate under dual fuel operation using LPG through inlet manifold as fuel along FME as ignition source. The brake thermal efficiency of FME with LPG (2LPM) blend is increased at an average of 5% when compared to the pure diesel fuel. HC emissions of FME with LPG (2LPM) blend are reduced by about at an average of 21% when compared to the pure diesel fuel. CO emissions of FME with LPG (2LPM) blends are reduced at an average of 33.6% when compared to the pure diesel fuel. NOx emissions of FME with LPG (2LPM) blend are reduced at an average of 4.4% when compared to the pure diesel fuel. Smoke opacity of FME with LPG (2LPM) blend is reduced at an average of 10% when compared to the pure diesel fuel.


2013 ◽  
Vol 446-447 ◽  
pp. 858-862
Author(s):  
Hasan Aydogan ◽  
A. Engin Ozcelik ◽  
Mustafa Acaroglu ◽  
Hakan Işik

Internal combustion engines are widely used in our day. Internal combustion engines first transform fuel energy into heat energy. Afterwards, approximately 30% of this heat energy is transformed into mechanical energy. Approximately 5% of the heat energy is expelled through friction and radiation, 30% through cooling and 35% through the exhaust system. In the present study, electricity was generated by using thermoelectric equipment and the waste heat expelled from the exhaust system. It was observed that as the exhaust temperature increased, the amount of electricity generated also increased.


2021 ◽  
pp. 31-37
Author(s):  
A.P. Marchenko ◽  
I.V. Parsadanov ◽  
A.V. Savchenko

Today, internal combustion engines are very common as energy sources in many countries around the world. This makes the tasks related to improving the environmental performance of internal combustion engines relevant. The introduction of alternative fuels in internal combustion engines is an effective way to reduce their negative impact on the environment. One of the most available and widespread alternative fuels for diesels is a water-fuel emulsion. The use of water-fuel emulsion makes it possible to reduce the specific fuel consumption of petroleum origin, as well as to achieve a significant reduction in emissions of harmful substances from diesel exhaust. However, due to differences in the physical properties of traditional diesel fuel and water-fuel emulsion, the course of the processes of mixture formation and combustion in the diesel cylinder changes significantly. This may be due to the emergence of a reserve for further improvement of the diesel engine by selecting the parameters of the diesel engine running on water-fuel emulsion. The study selected the following parameters for variation: compression ratio, boost pressure, duration of the injection process, injection timing. The article considers the influence of these parameters on the Brake-specific fuel consumption of diesel, the specific emission of particulate matter and nitrogen oxides, the maximum pressure in the cylinder. The nature and degree of influence of changes in the parameters of the diesel engine on its performance was determined using mathematical modeling. It should be noted that the influence of each of the parameters selected for variation is quite complex and often ambiguous. That is, when some indicators improve, others may deteriorate somewhat. Therefore, in order to select the most rational parameters of a diesel engine running on a water-fuel emulsion, it is necessary to simultaneously assess the economic and environmental performance of the diesel engine. For this assessment, a method was used to determine a comprehensive fuel and environmental criterion for a diesel engine running on a water-fuel emulsion. Thus, the article shows the potential for comprehensive improvement of environmental and economic performance of the diesel engine by choosing rational parameters.


1995 ◽  
Vol 39 (01) ◽  
pp. 76-85
Author(s):  
Dimitrios V. Lyridis ◽  
Michael G. Parsons ◽  
Anastassios N. Perakis

A statistical assessment of the stochastic modeling of torsional vibratory loads in internal combustion engines is performed, based on (temperature) factory testbed data, for each cylinder of four 16-cyl Colt-Pielstick PC2V type engines at various speeds. Several statistical tests are carried out to examine the hypothesis that the random variables describing the cylinder-to-cylinder variability in marine diesel engine shafting systems are independent and identically (normally) distributed, as assumed in previous work of the authors and other researchers. It is concluded that these assumptions cannot be rejected. Finally, point estimators are derived for the coefficient of variation of the cylinder-to-cylinder variability, and their values are compared to the values proposed elsewhere, which are found to be rather high.


Author(s):  
A.V. Dunaev ◽  
M. N. Kostomakhin

Due to the significant weakening of the maintenance Department ICC (aging equipment, the care of qualified personnel), a rise in the price of spare parts and TCM is becoming more important to increase the maintenance of equipment and control her condition organoleptic methods by the owners of the machines. Here, the age-old practice has accumulated a wealth of experience. Therefore, novice diagnosticians used all available devices, and experienced ones made do with a minimum. The article presents their experience in identifying diesel engine failures, preventing their intensive wear and failure.


Author(s):  
Gennadiy Petrovich Kicha ◽  
Liudmila Anatolievna Semeniuk

The article gives analysis of the advantages and disadvantages of cleaning engine oil in internal combustion engines by filtration and centrifugation. The principles of increasing the efficiency of fine oil purification by combining these methods are formulated. The scheme of a perspective system for fine cleaning of engine oil is presented, which most fully realizes the advantages of full-flow filtration and centrifugation for a two-circuit lubrication system of forced internal combustion engines. The operating conditions of diesel engines are shown, under which the advantages of filtration and centrifugation can be realized to the full. The indices for the specific productivity index and capacity of the centrifugal cleaner are calculated, contributing to the attainment of the minimum wear rate of the engine parts and the maximum service life of the filter elements. Prospects for the application of a full-flow fine engine oil purification system in forced engines with a sequential connection of purification units with different principles of separation of complex heterogeneous polydisperse systems, which include the products of contamination of lubrication systems, are outlined. Particularly effective is the use of the developed combined fine-cleaning system in marine diesel engines with increased rotational speed, operating on screw characteristics. The results of motor tests in the ship's trunk boosted diesels of the new combined lubrication oil fine cleaning system are reported. The results of operational tests in the marine diesel engine ДД108 (8ЧСПН 18/22) of a combined engine oil purification system have been analyzed, which combine the advantages of a full-flow filter and a centrifuge with a discharge head connected in series. The parameters of efficient regular and experienced combined engine oil cleaning system are compared with the effect on aging, wear and varnish and lacquer formation of a diesel engine.


Author(s):  
S.V. Timokhin ◽  
◽  
Yu.V. Rodionov ◽  
I.I. Kurbakov ◽  
◽  
...  

А significant factor affecting the reliability of the internal combustion engine and its technical and Economic indicators is the efficiency of the lubrication system. When the standard oil supply is applied, semiliquid friction occurs between the contacting parts, in which the parts are not completely separated by a layer of oil. However, with this friction, the required durability of components and parts with heat removal is guaranteed. The performance of the engine lubrication system is determined by the state of its elements (coarse and fine filters, oil radiator and pump, valves), as well as the quality of oil, its level in the internal combustion engine crankcase and temperature. In domestic internal combustion engines, the minimum oil level in the crankcase is controlled, but in operation there are situations when the oil level exceeds its maximum permissible value. This situation occurs when coolant or fuel enters the lubrication system. Coolant can get into the oil if the cylinder head gaskets, sleeve o-rings, or cracks in the cylinder head and block are broken. Top-Livo can enter the oil through worn and damaged parts of the fuel equipment (gas pump diaphragm, fuel pump plunger pairs, etc.). These liquids sharply degrade the quality of the oil and increase the wear of internal combustion engine parts, and the standard singlelevel indicator will not give the driver operational information about the malfunction. In connection with the above, the purpose of this work is to improve the technology for monitoring the technical condition of the internal combustion engine lubrication system on the example of the d-245 diesel engine and its modifications, which are widely used in GAZ (GAZ-3309), ZIL (ZIL-5301), MAZ (MAZ Zubrenok), PAZ buses (PAZ-3205), MTZ tractors (MTZ — 100, 892, 1020), agricultural and construction equipment.by developing and implementing a built — in device for monitoring the minimum and maximum oil levels in the crankcase, as well as its temperature. The scientific novelty of the work is due to the use of new circuit and technical solutions, as well as the original algorithm of the sensor operation developed by the authors, based on the use of switching laws of reed switches with normally closed and normally open contacts, the operation of which is spaced over time and controlled oil levels. Block diagram of the proposed device comprises a multifunction sensor level and oil temperature, including sensors of the mi-minimum and increased levels of engine oil in the crankcase of the engine and its temperature, the operation mode switch signal cooling temperature-edusei fluid and engine oil, the first and second voltage сomparators, indicator lights, buzzer, switch power supply, voltage regulator and regular temperature sensor coolant. The use of the developed device significantly increases the reliability and convenience of monitoring one of the most important indicators of internal combustion engines-the oil level in the crankcase, which will avoid significant engine damage. As a result of further research, it is planned to develop the device design, conduct laboratory studies of the developed multifunctional sensor in order to determine the dependence of its resistance on the temperature at the normal level of engine oil in the measuring flask, as well as determine the actual values of the developed sensor response heights at the lower and upper levels.


Sign in / Sign up

Export Citation Format

Share Document