scholarly journals ANALYSIS OF POSSIBILITIES OF PROVIDING OF NECESSARY EXACTNESS OF MEASURING OF SPATIAL COORDINATES OF AIR OBJECTS IN THE RADIO-LOCATION STATION OF ACCOMPANIMENT WITH PHASE AERIAL BY A GRATE

2020 ◽  
Vol 4 (1) ◽  
pp. 91-96
Author(s):  
Oleksandr Kuznietsov ◽  
Oleksii Kolomiitsev ◽  
Andriy Kiyko ◽  
Andriy Kovalchuk ◽  
Kostiantyn Sadovyi
Author(s):  
A. Vetoshkin ◽  
A. Аrtikula ◽  
D. Britov

The development of the theory and technology of radio location indicates the need to solve problems of radar recognition of targets by spatial parameters. This is due to the need to provide in promising radar stations (complexes) with a software overview of the required resolution to obtain three-dimensional images in all spatial coordinates. The task of radar targets recognition, which is to assign the observed objects to the appropriate classes and types, is of considerable and growing interest. Different classes (types) of targets make up a certain alphabet, the choice of which determines not only the effectiveness of the use of recognition, but also the difficulties that arise in its implementation. Currently, there are a large number of radar recognition algorithms. They differ in the stages of decision-making, the degree and nature of accounting for statistics of signs, obstacles and signals. Due to the fact that the secondary emission pattern of extended targets is multi-lobed, statistical algorithms are preferred. The information used for radar recognition is contained in the set of received radar signals. However, most often for target recognition certain measured target features are used, which are compared in accordance with the recognition algorithms with known (reference) features. The choice of recognition features is usually made heuristically. This set of parameters does not always allow providing the required quality of recognition. The synthesized algorithms work unstable or require unreasonably large computational costs due to a significant increase in the dimensionality of the feature space. Analysis of known radar recognition algorithms of extended targets shows that they were developed under significant constraints. At present, the tasks of point targets radar surveillance are most fully solved. The tasks of processing signals reflected from bodies of complex shape, given the difficulties of their formulation and solution are not fully explored. It is promising to consider a set of radar surveillance tasks and the criteria used in them as a multicriteria task, the solution of which is associated with vector optimization of the location system as a whole.


2020 ◽  
pp. 164-170
Author(s):  
V.I. Semenova

In the post-Soviet era, the onomastic space of Irkutsk noticeably changed. First, changes are found in ergonymy. The transition of the Russian economy to market relations caused the emergence of many new commercial enterprises, which receive their own names. The process of ergonymy development is seriously affected by international population migration. Most migrants work in the service sector and often give their enterprises names associated with their homeland or reflecting national peculiarities. In the linguistic and cultural space of the city, more and more ethnic names appear. These names are included in the system of urban spatial coordinates, significantly changing the composition of ergonyms. ОБСУЖДЕНИЕ:


Author(s):  
V. K. Klochko ◽  
◽  
S. M. Gudkov ◽  
C. H. Nguyen ◽  
◽  
...  
Keyword(s):  

2019 ◽  
pp. 143-158
Author(s):  
V. E. Bakhareva ◽  
I. V. Nikitina ◽  
A. A. Churikova

The article is devoted to the urgent scientific problem of creation and introduction in shipbuilding of high-strength, water-resistant dielectric glass-reinforced hot pressed plastics on the basis of bi- and polyfunctional epoxy-amine binders and glass fabrics from alkali, quartz and silica glass.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter examines solutions to the Maxwell equations in a vacuum: monochromatic plane waves and their polarizations, plane waves, and the motion of a charge in the field of a wave (which is the principle upon which particle detection is based). A plane wave is a solution of the vacuum Maxwell equations which depends on only one of the Cartesian spatial coordinates. The monochromatic plane waves form a basis (in the sense of distributions, because they are not square-integrable) in which any solution of the vacuum Maxwell equations can be expanded. The chapter concludes by giving the conditions for the geometrical optics limit. It also establishes the connection between electromagnetic waves and the kinematic description of light discussed in Book 1.


2021 ◽  
Vol 14 ◽  
pp. 117862212110092
Author(s):  
Michele M Tobias ◽  
Alex I Mandel

Many studies in air, soil, and water research involve observations and sampling of a specific location. Knowing where studies have been previously undertaken can be a valuable addition to future research, including understanding the geographical context of previously published literature and selecting future study sites. Here, we introduce Literature Mapper, a Python QGIS plugin that provides a method for creating a spatial bibliography manager as well as a specification for storing spatial data in a bibliography manager. Literature Mapper uses QGIS’ spatial capabilities to allow users to digitize and add location information to a Zotero library, a free and open-source bibliography manager on basemaps or other geographic data of the user’s choice. Literature Mapper enhances the citations in a user’s online Zotero database with geo-locations by storing spatial coordinates as part of traditional citation entries. Literature Mapper receives data from and sends data to the user’s online database via Zotero’s web API. Using Zotero as the backend data storage, Literature Mapper benefits from all of its features including shared citation Collections, public sharing, and an open web API usable by additional applications, such as web mapping libraries. To evaluate Literature Mapper’s ability to provide insights into the spatial distribution of published literature, we provide a case study using the tool to map the study sites described in academic publications related to the biogeomorphology of California’s coastal strand vegetation, a line of research in which air movement, soil, and water are all driving factors. The results of this exercise are presented in static and web map form. The source code for Literature Mapper is available in the corresponding author’s GitHub repository: https://github.com/MicheleTobias/LiteratureMapper


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Soumangsu Chakraborty ◽  
Akikazu Hashimoto

Abstract We derive the geodesic equation for determining the Ryu-Takayanagi surface in AdS3 deformed by single trace $$ \mu T\overline{T} $$ μT T ¯ + $$ {\varepsilon}_{+}J\overline{T} $$ ε + J T ¯ + $$ {\varepsilon}_{-}T\overline{J} $$ ε − T J ¯ deformation for generic values of (μ, ε+, ε−) for which the background is free of singularities. For generic values of ε±, Lorentz invariance is broken, and the Ryu-Takayanagi surface embeds non-trivially in time as well as spatial coordinates. We solve the geodesic equation and characterize the UV and IR behavior of the entanglement entropy and the Casini-Huerta c-function. We comment on various features of these observables in the (μ, ε+, ε−) parameter space. We discuss the matching at leading order in small (μ, ε+, ε−) expansion of the entanglement entropy between the single trace deformed holographic system and a class of double trace deformed theories where a strictly field theoretic analysis is possible. We also comment on expectation value of a large rectangular Wilson loop-like observable.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Tim Fischer ◽  
Marco Caversaccio ◽  
Wilhelm Wimmer

AbstractThe Cocktail Party Effect refers to the ability of the human sense of hearing to extract a specific target sound source from a mixture of background noises in complex acoustic scenarios. The ease with which normal hearing people perform this challenging task is in stark contrast to the difficulties that hearing-impaired subjects face in these situations. To help patients with hearing aids and implants, scientists are trying to imitate this ability of human hearing, with modest success so far. To support the scientific community in its efforts, we provide the Bern Cocktail Party (BCP) dataset consisting of 55938 Cocktail Party scenarios recorded from 20 people and a head and torso simulator wearing cochlear implant audio processors. The data were collected in an acoustic chamber with 16 synchronized microphones placed at purposeful positions on the participants’ heads. In addition to the multi-channel audio source and image recordings, the spatial coordinates of the microphone positions were digitized for each participant. Python scripts were provided to facilitate data processing.


Sign in / Sign up

Export Citation Format

Share Document