scholarly journals Finite Element Analysis of the Parthenon marble block- steel clamp system response under acceleration

ACTA IMEKO ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 155
Author(s):  
Zacharias Vangelatos ◽  
Michail Delagrammatikas ◽  
Olga Papadopoulou ◽  
Charalampos Titakis ◽  
Panayota Vassiliou

<p class="Abstract">Finite element analysis is employed to investigate the mechanical behaviour and failure scenarios of the marble block–steel clamp ancient masonry system utilised in the Parthenon (Athens Acropolis) under static loading analysis. The input data for the model are acquired by the laboratory testing of early 20th century restoration steel clamps, such as through tensile strength measurements and metallography, as well as bibliographic sources from various scientific fields (i.e. material properties, archaeometry, restoration, structural engineering and geology). Two different embedding materials (Portland cement mortar and lead), used for the nesting of the clamps, are examined under bending or stretching, induced by acceleration forces. The conservation status of the materials is taken into account by employing an intrinsic stress, as is the case when corrosion products build up in a confined space. The aim of this work is to provide a tool for the assessment of the conservation potential of the marble blocks in parts of the monument that require specific attention. Simulation results indicate the resilience of the Parthenon’s structural system under most examined scenarios and highlight the importance of intrinsic stresses, the existence of which may lead to the fracture of the marble blocks under otherwise harmless loading conditions.</p>

2010 ◽  
Vol 452-453 ◽  
pp. 509-512
Author(s):  
Yao Guo Zhu ◽  
Qing Xiang Wang

Nowadays embedded parts which connect steel members with concrete structures have frequently emerged in civil engineering; however the existing design code for embedded parts cannot satisfy the increasing demand of engineering as it was derived from limited experiments. In the paper, a finite element study on embedded parts with big-diameter reinforcing bars under shear force is conducted. The aim of the study was to fully investigate the mechanical performances of embedded parts under shear force using a three-dimensional finite element analysis with the help of a commercial software ANSYS. Cross-section internal force of anchor bar, embedded part deformation, interaction force between anchor bar and concrete, and friction force were investigated in order to well know the system response. The results show that the shear capacity of embedded part obtained from finite element analysis is conservative.


Author(s):  
Yongwook Kim ◽  
Jarett Rooney

<p>More frequent terrorist attacks to civilians, buildings, and infrastructures have been observed in recent years, which occasionally resulted in significant fatalities, financial damages, and service interruptions due to collapses of the structures. The collapse of a structure can be triggered by substantial or complete damages of essential structural members, potentially resulting from close-range detonations. Close-range detonations can be fatal even with a small portable charge weight. Many structures in major international cities are potentially exposed to close-range detonations, simply because there is no room to maintain a sufficient stand-off distance around each structural member. Current available approaches to blast resistant designs are focusing on far-range detonations; for close-range detonations, a non-linear explicit finite element analysis is required, instead. Most structural engineering firms do not have access to the analyses, because the details of the analysis are not readily available. In the present study, some details of the non-linear explicit finite element analysis are presented for close-range detonations. The same method is applied to numerical parametric studies for a standard steel column subjected to a range of charge weights and stand-off distances. In the study, the development of a performance-based engineering chart is discussed, which can be used by general structural engineers without performing the numerical analysis. A few practical strengthening layers of steel members are also investigated to effectively mitigate potential damages from close-range detonations.</p>


Author(s):  
LOUIS KOMZSIK

In the late 1980s someone in the CAD software arena coined the phrase in the main title. A decade passed by and the appealing idea is still not realized. Is it ever going to be or is there an inherent fallacy in the idea? The following is the author's position on the subject, admittedly biased by a structural engineering background.


Author(s):  
Suneel Patel ◽  
Shankar Sundararaman ◽  
Pete Padelopoulos ◽  
Kamaldev Raghavan ◽  
Metin Karayaka ◽  
...  

Riser wake interference analysis is conducted based on analytical / semi-empirical models such as Blevins’ and Huse’s models. These models are used for modeling the reduction in particle flow velocity due to the presence of a cylindrical object upstream in the flow path. However, these models are often too conservative and accurate only for circular cylinders. Many top tensioned risers (TTRs) use vortex induced vibration (VIV) suppression devices such as strakes or fairings. There is a need for alternate methods to obtain drag and lift coefficient datasets for circular cylinders with strakes and fairings. Two such approaches are to obtain data from Computational Fluid Dynamics (CFD) simulations or from experimental large-scale model test data. Interpolation and/or extrapolation methods are needed to obtain additional data points for global riser finite element analysis. This paper presents a methodology to obtain hydrodynamic coefficients for TTRs with VIV suppression devices. The proposed methodology uses a combination of empirical formulas based on Blevins’ model and numerical interpolation techniques along with experimental tow tank test data and CFD analysis. The resulting data is then input as user-defined drag/lift coefficients into a global riser finite element analysis to obtain a more realistic riser system response.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
D. Saravana Bavan ◽  
G. C. Mohan Kumar

Natural fiber composites are termed as biocomposites or green composites. These fibers are green, biodegradable, and recyclable and have good properties such as low density and low cost when compared to synthetic fibers. The present work is investigated on the finite element analysis of the natural fiber (maize) composite beam, processed by means of hand lay-up method. Composite beam material is composed of stalk-based fiber of maize and unsaturated polyester resin polymer as matrix with methyl ethyl ketone peroxide (MEKP) as a catalyst and Cobalt Octoate as a promoter. The material was modeled and resembled as a structural beam using suitable assumption and analyzed by means of finite element method using ANSYS software for determining the deflection and stress properties. Morphological analysis and X-ray diffraction (XRD) analysis for the fiber were examined by means of scanning electron microscope (SEM) and X-ray diffractometer. From the results, it has been found that the finite element values are acceptable with proper assumptions, and the prepared natural fiber composite beam material can be used for structural engineering applications.


Sign in / Sign up

Export Citation Format

Share Document